Nonadiabatically Driven Quantum Interference Effects in the Ultracold K + KRb → Rb + K 2 Chemical Reaction
- Award ID(s):
- 2110227
- PAR ID:
- 10599795
- Publisher / Repository:
- American Chemical Society
- Date Published:
- Journal Name:
- The Journal of Physical Chemistry Letters
- Volume:
- 16
- Issue:
- 24
- ISSN:
- 1948-7185
- Format(s):
- Medium: X Size: p. 6171-6177
- Size(s):
- p. 6171-6177
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract For a subgraph$$G$$of the blow-up of a graph$$F$$, we let$$\delta ^*(G)$$be the smallest minimum degree over all of the bipartite subgraphs of$$G$$induced by pairs of parts that correspond to edges of$$F$$. Johansson proved that if$$G$$is a spanning subgraph of the blow-up of$$C_3$$with parts of size$$n$$and$$\delta ^*(G) \ge \frac{2}{3}n + \sqrt{n}$$, then$$G$$contains$$n$$vertex disjoint triangles, and presented the following conjecture of Häggkvist. If$$G$$is a spanning subgraph of the blow-up of$$C_k$$with parts of size$$n$$and$$\delta ^*(G) \ge \left(1 + \frac 1k\right)\frac n2 + 1$$, then$$G$$contains$$n$$vertex disjoint copies of$$C_k$$such that each$$C_k$$intersects each of the$$k$$parts exactly once. A similar conjecture was also made by Fischer and the case$$k=3$$was proved for large$$n$$by Magyar and Martin. In this paper, we prove the conjecture of Häggkvist asymptotically. We also pose a conjecture which generalises this result by allowing the minimum degree conditions in each bipartite subgraph induced by pairs of parts of$$G$$to vary. We support this new conjecture by proving the triangle case. This result generalises Johannson’s result asymptotically.more » « less
-
Abstract PCPDTBT‐SO3K (CPE‐K), a conjugated polyelectrolyte, is presented as a mixed conductor material that can be used to fabricate high transconductance accumulation mode organic electrochemical transistors (OECTs). OECTs are utilized in a wide range of applications such as analyte detection, neural interfacing, impedance sensing, and neuromorphic computing. The use of interdigitated contacts to enable high transconductance in a relatively small device area in comparison to standard contacts is demonstrated. Such characteristics are highly desired in applications such as neural‐activity sensing, where the device area must be minimized to reduce invasiveness. The physical and electrical properties of CPE‐K are fully characterized to allow a direct comparison to other top performing OECT materials. CPE‐K demonstrates an electrical performance that is among the best reported in the literature for OECT materials. In addition, CPE‐K OECTs operate in the accumulation mode, which allows for much lower energy consumption in comparison to commonly used depletion mode devices.more » « less
-
Abstract All‐solid‐state potassium batteries emerge as promising alternatives to lithium batteries, leveraging their high natural abundance and cost‐effectiveness. Developing potassium solid electrolytes (SEs) with high room‐temperature ionic conductivity is critical for realizing efficient potassium batteries. In this study, we present the synthesis of K2.98Sb0.91S3.53Cl0.47, showcasing a room‐temperature ionic conductivity of 0.32 mS/cm and a low activation energy of 0.26 eV. This represents an increase of over two orders of magnitude compared to the parent compound K3SbS4, marking the highest reported ionic conductivity for non‐oxide potassium SEs. Solid‐state39K magic‐angle‐spinning nuclear magnetic resonance on K2.98Sb0.91S3.53Cl0.47reveals an increased population of mobile K+ions with fast dynamics. Ab initio molecular dynamics (AIMD) simulations further confirm a delocalized K+density and significantly enhanced K+diffusion. This work demonstrates diversification of the anion sublattice as an effective approach to enhance ion transport and highlights K2.98Sb0.91S3.53Cl0.47as a promising SE for all‐solid‐state potassium batteries.more » « less
An official website of the United States government
