Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Hydrogen chloride (HCl) is a key repository of chlorine in the interstellar medium. Accurate determinations of its abundance are critical to assessing the chlorine elemental abundance and constraining stellar nucleosynthesis models. To aid in modeling recent and future observations of HCl rovibrational spectra, we present cross sections and rate coefficients for collisions between HCl and molecular hydrogen. Transitions between rovibrational states of HCl are considered for temperatures ranging from 10 to 3000 K. Cross sections are computed using a full dimensional quantum close-coupling (CC) method and a reduced dimensionality coupled-states (CS) approach. The CS results, benchmarked against the CC results, are used with a recoupling approach to calculate hyperfine-resolved rate coefficients for rovibrational transitions of HCl induced by H2. The rate coefficients will allow for a better determination of the HCl abundance in the interstellar medium and an improved understanding of interstellar chlorine chemistry. We demonstrate the utility of the new rate coefficients in a nonthermodynamic equilibrium radiative transfer model applied to observations of HCl rovibrational transitions in a circumstellar shell.more » « less
-
The calcium monofluoride (CaF) molecule has emerged as a promising candidate for precision measurements, quantum simulation, and ultracold chemistry experiments. Inelastic and reactive collisions of laser cooled CaF molecules in optical tweezers have recently been reported and collisions of cold Li atoms with CaF are of current experimental interest. In this paper, we report ab initio electronic structure and full-dimensional quantum dynamical calculations of the Li + CaF → LiF + Ca chemical reaction. The electronic structure calculations are performed using the internally contracted multi-reference configuration-interaction method with Davidson correction (MRCI + Q). An analytic fit of the interaction energies is obtained using a many-body expansion method. A coupled-channel quantum reactive scattering approach implemented in hyperspherical coordinates is adopted for the scattering calculations under cold conditions. Results show that the Li + CaF reaction populates several low-lying vibrational levels and many rotational levels of the product LiF molecule and that the reaction is inefficient in the 1–100 mK regime allowing sympathetic cooling of CaF by collisions with cold Li atoms.more » « less
An official website of the United States government
