skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 1, 2026

Title: Ancestral evolution of oxidase activity in a class of (S)-nicotine and (S)-6-hydroxynicotine degrading flavoenzymes
Award ID(s):
2236541
PAR ID:
10599845
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
American Society for Biochemistry and Molecular Biology
Date Published:
Journal Name:
Journal of Biological Chemistry
ISSN:
0021-9258
Page Range / eLocation ID:
110360
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Dos Santos, P.C. (Ed.)
    Iron-Sulfur (Fe-S) clusters function as core prosthetic groups known to modulate the activity of metalloenzymes, act as trafficking vehicles for biological iron and sulfur, and participate in several intersecting metabolic pathways. The formation of these clusters is initiated by a class of enzymes called cysteine desulfurases, whose primary function is to shuttle sulfur from the amino acid l-cysteine to a variety of sulfur transfer proteins involved in Fe-S cluster synthesis as well as in the synthesis of other thiocofactors. Thus, sulfur and Fe-S cluster metabolism are connected through shared enzyme intermediates, and defects in their associated pathways cause a myriad of pleiotropic phenotypes, which are difficult to dissect. Post-transcriptionally modified transfer RNA (tRNA) represents a large class of analytes whose synthesis often requires the coordinated participation of sulfur transfer and Fe-S enzymes. Therefore, these molecules can be used as biologically relevant readouts for cellular Fe and S status. Methods employing LC-MS technology provide a valuable experimental tool to determine the relative levels of tRNA modification in biological samples and, consequently, to assess genetic, nutritional, and environmental factors modulating reactions dependent on Fe-S clusters. Herein, we describe a robust method for extracting RNA and analytically evaluating the degree of Fe-S-dependent and -independent tRNA modifications via an LC-MS platform. 
    more » « less
  2. Abstract The notion of spin‐ Dicke states is introduced, which are higher‐spin generalizations of usual (spin‐1/2) Dicke states. These multi‐qudit states can be expressed as superpositions of qudit Dicke states. They satisfy a recursion formula, which is used to formulate an efficient quantum circuit for their preparation, whose size scales as , where is the number of qudits and is the number of times the total spin‐lowering operator is applied to the highest‐weight state. The algorithm is deterministic and does not require ancillary qudits. 
    more » « less