skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 16, 2026

Title: Leaving no zircon unturned: quantifying the impact of handpicking sharply faceted detrital zircon on maximum depositional age analysis
ABSTRACT Using the youngest detrital-zircon date(s) of a sedimentary deposit to constrain its maximum depositional age (MDA) is a widespread and growing application of geochronology. Most MDA studies analyze zircon grains at random, but this strategy can be costly and inefficient in cases where the youngest age group is only a small fraction of the population. We propose that handpicking sharply faceted zircon grains will increase the likelihood of encountering first-cycle zircon that have not undergone significant sedimentary transport, thus producing MDA estimates that are closer to the depositional age. We evaluate this procedure by conducting intra-sample comparisons of randomly selected versus handpicked zircon separates from 30 samples analyzed via laser-ablation–inductively coupled plasma–mass spectrometry (LA–ICP–MS). Our results show that handpicking zircon produces an overall shift towards younger ages in comparison to their randomly analyzed counterparts by an average of ∼ 406 Myr. In randomly analyzed separates, only 1.6% of grains were within 5 Myr of an independent estimate of the MDA, while handpicked separates contained 14.2%, an approximately nine-fold increase. However, handpicking can also lead to selection of older grains if they have been minimally transported, as with one handpicked Mesozoic sample that yielded 81% of ∼ 1.1 Ga zircon interpreted to be derived from a local granitic source. Handpicking is most effective in samples where young, sharply faceted grains are diluted by older, rounded grains, as with one sample that exhibited an ∼ 18-fold increase in the proportion of near-depositional-age zircons relative to its counterpart where grain selection was random. Because handpicking zircon imparts a severe bias on the resulting U–Pb age distribution, we recommend that two separate aliquots be used for quantitative provenance characterization through random analysis and MDA analysis through handpicking.  more » « less
Award ID(s):
1925915
PAR ID:
10599924
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Geological Society of America
Date Published:
Journal Name:
Journal of Sedimentary Research
Volume:
95
Issue:
2
ISSN:
1527-1404
Page Range / eLocation ID:
434 to 443
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Recent U-Pb high-precision geochronological studies have shown rapid emplacement of the intrusive doleritic component of the Karoo Large Igneous Province (KLIP) in Southern Africa. However, these studies focused on a relatively small geographic and altitudinal region of the KLIP. Additionally, the timing of initiation of extrusive volcanism, preserved in the Drakensberg-Lesotho highlands and its relationship to the intrusive suite, has only been imprecisely constrained by Ar-Ar dates. Here, we present new high-resolution U-Pb zircon ages on dolerite sills and dykes from across the central eastern Karoo Basin (South Africa) at elevations between mean sea level and 1 560 m, as well as U-Pb detrital zircon data that can be used to estimate the maximum age of volcaniclastic deposition near the base of the extrusive component of the KLIP. Dolerite samples were taken across two areas: (1) thick dykes exposed along the coast of the Indian Ocean to ~1 600 m flanking the Drakensberg Escarpment in the Eastern Cape; and (2) sills between 20 and 220 m below surface, in a borehole core within the interior of the Karoo Basin, 400 km hinterland from the coastline. Our estimated dolerite emplacement ages span a range of ca. 80 thousand years (Kyr), between 183.122 ± 0.029/-0.061 and 183.042 ± 0.042/-0.072 million years ago (Ma), and fall within the 331 +60/-54 Kyr age range previously established for magmatism related to the KLIP, despite the marked increase in sampling coverage in terms of area and altitude in this study. Therefore, KLIP geochronology is consistent with other LIPS such as the Siberian and Deccan Traps that supports the hypothesis of rapid emplacement timescales (<1 Myr). Additionally, these data are consistent with, but better delineate that the KLIP in southern Africa appears to be ca. 500 Kyr older than the main phase of magmatism in the Ferrar LIP of Antarctica. Detrital zircons from the basal volcanic sequence of the Drakensberg Group exhibit age peaks at ca. 1 and 0.5 Ga, typical of the surrounding Namaqua-Natal and Pan-African basement rocks, as well as younger peaks at ca. 260 and 200 Ma that likely relate to source provenances from south-western Gondwana and reworking of the Karoo Supergroup sedimentary rocks. High-precision U-Pb dates of the youngest zircon grains result in a maximum depositional age for the basal pyroclastics of 185.25 ± 0.25 Ma, allowing for a ca. 2 Myr offset with the intrusive Karoo dolerite suite. 
    more » « less
  2. The Upper Jurassic Galice Formation, a metasedimentary unit in the Western Klamath Mountains, formed within an intra-arc basin prior to and during the Nevadan orogeny. New detrital zircon U-Pb age analyses (N = 11; n = 2792) yield maximum depositional ages (MDA) ranging from ca. 160 Ma to 151 Ma, which span Oxfordian to Kimmeridgian time and overlap Nevadan contractional deformation that began by ca. 157 Ma. Zircon ages indicate a significant North American continental provenance component that is consistent with tectonic models placing the Western Klamath terrane on the continental margin in Late Jurassic time. Hf isotopic analysis of Mesozoic detrital zircon (n = 603) from Galice samples reveals wide-ranging εHf values for Jurassic and Triassic grains, many of which cannot be explained by a proximal source in the Klamath Mountains, thus indicating a complex provenance. New U-Pb ages and Hf data from Jurassic plutons within the Klamath Mountains match some of the Galice Formation detrital zircon, but these data cannot account for the most non-radiogenic Jurassic detrital grains. In fact, the in situ Cordilleran arc record does not provide a clear match for the wide-ranging isotopic signature of Triassic and Jurassic grains. When compiled, Galice samples indicate sources in the Sierra Nevada pre-batholithic framework and retroarc region, older Klamath terranes, and possibly overlap strata from the Blue Mountains and the Insular superterrane. Detrital zircon age spectra from strata of the Upper Jurassic Great Valley Group and Mariposa Formation contain similar age modes, which suggests shared sediment sources. Inferred Galice provenance within the Klamath Mountains and more distal sources suggest that the Galice basin received siliciclastic turbidites fed by rivers that traversed the Klamath-Sierran arc from headwaters in the retroarc region. Thus, the Galice Formation contains a record of active Jurassic magmatism in the continental arc, with significant detrital input from continental sediment sources within and east of the active arc. These westward-flowing river systems remained active throughout the shift in Cordilleran arc tectonics from a transtensional system to the Nevadan contractional system, which is characterized by sediment sourced in uplifts within and east of the arc and the thrusting of older Galice sediments beneath older Klamath terranes to the east. 
    more » « less
  3. Abstract The Wombat and Giraffe kimberlite pipes in the Lac de Gras kimberlite field (64°N, 110°W) of the Northwest Territories, Canada, preserve unique post-eruptive lacustrine and paludal sedimentary records that offer rare insight into high-latitude continental paleoclimate. However, depositional timing—a key datum for atmospheric CO2 and paleoclimatic proxy reconstructions—of these maar infills remains ambiguous and requires refinement because of the large range in the age of kimberlites within the Lac de Gras kimberlite field. Existing constraints for the Giraffe pipe post-eruptive lacustrine and paludal maar sedimentary facies include a maximum Rb-Sr age of ca. 48 Ma (Ypresian, Eocene) based on kimberlitic phlogopite and a glass fission-track age of ca. 38 Ma (Bartonian, Eocene). The age of the Wombat pipe lacustrine maar sediments remains unclear, with unpublished pollen-based biostratigraphy suggesting deposition in the Paleocene (66–56 Ma). In this study, we examine distal rhyolitic tephra beds recovered from exploration drill cores intersecting the Wombat and Giraffe maar facies. We integrate zircon U-Pb laser ablation–inductively coupled plasma–mass spectrometry (LA-ICP-MS) and chemical abrasion–isotope dilution–thermal ionization mass spectrometry (CA-ID-TIMS) geochronology, glass fission-track dating, palynology, and tephra glass geochemistry to refine chronological frameworks for these sedimentary deposits. The Giraffe maar CA-ID-TIMS tephra zircon U-Pb dating yielded a Bayesian model age of 47.995 ± 0.082|0.087 Ma (Ypresian) for the upper portion of the lacustrine sediments, while a single zircon grain from tephra in the lowermost lacustrine sediments had an age of 48.72 ± 0.29|0.30 Ma. The revised geochronology for the Giraffe maar provides a working age model for the ~50 m record of lacustrine silt and indicates an age ~10 m.y. older than previously thought. The Wombat maar LA-ICP-MS zircon U-Pb dating yielded an age of 80.9 ± 1.0 Ma (Campanian), which indicates deposition during the Late Cretaceous. This first radiometric age for the Wombat maar deposits is substantially older than earlier biostratigraphic inferences of a Paleocene age. This new age suggests that the Wombat maar sediments preserve evidence of some of the oldest known freshwater diatoms and synurophytes and provide key constraints for the paleogeography of the Western Interior Seaway during the Late Cretaceous. 
    more » « less
  4. Much of the southern Alaska continental margin is made up of marine sedimentary rocks and distinct terranes that have been deposited and accreted from the Cretaceous to the present (Plafker et al., 1994). The Upper Cretaceous to Eocene Chugach-Prince William (CPW) terrane is interpreted to be one of the thickest accretionary complexes in the world, and it is bounded to the north by the Border Ranges fault and Wrangellia composite terrane (Garver and Davidson, 2015). The CPW terrane is inferred to be the Mesozoic accretionary complex of southern Alaska (Amato et al., 2013), but alternate hypotheses suggest it originally formed far to the south (Cowan, 2003). The CPW consists of inboard mesomélange (the McHugh Complex & Potter Creek Assemblage) and stratigraphically younger outboard flysch facies (the Valdez & Orca groups) and associated volcanics (Plafker et al., 1989; Garver and Davidson, 2015; Amato et al., 2013). The blueschist to greenschist Potter Creek Assemblage formed in Cretaceous-Early Jurassic subduction (Amato et al., 2013). The McHugh Complex is made up of mélange and deformed conglomerates and sandstones and ages range from the Jurassic to mid Cretaceous (Amato et al., 2013). The majority of the CPW terrane (>90 %) is comprised of the outboard flysch facies of the Late Cretaceous to Eocene Valdez and Orca groups juxtaposed along the Contact fault system (Garver and Davidson, 2015, Dumoulin, 1987; Fig. 1). The CPW terrane was intruded by the 61-50 Ma Sanak-Baranof belt (SBB) near-trench plutons that are diachronous (Bradley et al., 2003; Cowan, 2003). There are two predominant hypotheses concerning the intrusion of these plutons and the amalgamation and translation of the CPW terrane. The Baranof-Leech River hypothesis suggests the CPW terrane formed to the south and was then translated along the margin (Cowan, 2003). A more northern hypothesis where CPW terrane formed in situ and the Resurrection Plate subducted underneath it (Haeussler et al., 2003). These alternate hypotheses each require a different sediment provenance for the CPW terrane outboard flysch assemblages. The goal of this study is to determine the depositional age, provenance, and original tectonic setting of the flysch facies of CPW terrane, with an emphasis on the younger Orca Group. Using maximum depositional ages (MDA) and the KS test, we delineate four distinctive zircon facies: 1) Miners Bay (~61-59 Ma, n=2244 grains); 2) Sawmill (59-55 Ma, n=1340); 3) Hawkins (55-50 Ma, n=1914); and 4) Montague (52-31 Ma, n=1144) (Fig. 2). A major stratigraphic conundrum is that the oldest Orca is age-correlative and has a similar provenance to the youngest Valdez Group at 61-60 Ma, and the location of these rocks casts doubt of models that rely on the Contact fault system as a terrane-bounding fault. 
    more » « less
  5. null (Ed.)
    Abstract Detrital zircon U-Pb geochronology is one of the most common methods used to constrain the provenance of ancient sedimentary systems. Yet, its efficacy for precisely constraining paleogeographic reconstructions is often complicated by geological, analytical, and statistical uncertainties. To test the utility of this technique for reconstructing complex, margin-parallel terrane displacements, we compiled new and previously published U-Pb detrital zircon data (n = 7924; 70 samples) from Neoproterozoic–Cambrian marine sandstone-bearing units across the Porcupine shear zone of northern Yukon and Alaska, which separates the North Slope subterrane of Arctic Alaska from northwestern Laurentia (Yukon block). Contrasting tectonic models for the North Slope subterrane indicate it originated either near its current position as an autochthonous continuation of the Yukon block or from a position adjacent to the northeastern Laurentian margin prior to >1000 km of Paleozoic–Mesozoic translation. Our statistical results demonstrate that zircon U-Pb age distributions from the North Slope subterrane are consistently distinct from the Yukon block, thereby supporting a model of continent-scale strike-slip displacement along the Arctic margin of North America. Further examination of this dataset highlights important pitfalls associated with common methodological approaches using small sample sizes and reveals challenges in relying solely on detrital zircon age spectra for testing models of terranes displaced along the same continental margin from which they originated. Nevertheless, large-n detrital zircon datasets interpreted within a robust geologic framework can be effective for evaluating translation across complex tectonic boundaries. 
    more » « less