skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 17, 2026

Title: Fractional Parabolic Theory as a High-Dimensional Limit of Fractional Elliptic Theory
Award ID(s):
2054282 2348739
PAR ID:
10600022
Author(s) / Creator(s):
;
Publisher / Repository:
Arxiv
Date Published:
Journal Name:
arXivorg
ISSN:
2331-8422
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    This paper presents a self-contained new theory of weak fractional differential calculus in one-dimension. The crux of this new theory is the introduction of a weak fractional derivative notion which is a natural generalization of integer order weak derivatives; it also helps to unify multiple existing fractional derivative definitions and characterize what functions are fractionally differentiable. Various calculus rules including a fundamental theorem calculus, product and chain rules, and integration by parts formulas are established for weak fractional derivatives. Additionally, relationships with classical fractional derivatives and detailed characterizations of weakly fractional differentiable functions are also established. Furthermore, the notion of weak fractional derivatives is also systematically extended to general distributions instead of only to some special distributions. This new theory lays down a solid theoretical foundation for systematically and rigorously developing new theories of fractional Sobolev spaces, fractional calculus of variations, and fractional PDEs as well as their numerical solutions in subsequent works. 
    more » « less
  2. We develop the theory of fractional gradient flows: an evolution aimed at the minimization of a convex, lower semicontinuous energy, with memory effects. This memory is characterized by the fact that the negative of the (sub)gradient of the energy equals the so-called Caputo derivative of the state. We introduce the notion of energy solutions, for which we provide existence, uniqueness and certain regularizing effects. We also consider Lipschitz perturbations of this energy. For these problems we provide an a posteriori error estimate and show its reliability. This estimate depends only on the problem data, and imposes no constraints between consecutive time-steps. On the basis of this estimate we provide an a priori error analysis that makes no assumptions on the smoothness of the solution. 
    more » « less
  3. This study presents a generalized elastodynamic theory, based on fractional-order operators, capable of modelling the propagation of elastic waves in non-local attenuating solids and across complex non-local interfaces. Classical elastodynamics cannot capture hybrid field transport processes that are characterized by simultaneous propagation and diffusion. The proposed continuum mechanics formulation, which combines fractional operators in both time and space, offers unparalleled capabilities to predict the most diverse combinations of multiscale, non-local, dissipative and attenuating elastic energy transport mechanisms. Despite the many features of this theory and the broad range of applications, this work focuses on the behaviour and modelling capabilities of the space-fractional term and on its effect on the elastodynamics of solids. We also derive a generalized fractional-order version of Snell’s Law of refraction and of the corresponding Fresnel’s coefficients. This formulation allows predicting the behaviour of fully coupled elastic waves interacting with non-local interfaces. The theoretical results are validated via direct numerical simulations. 
    more » « less
  4. null (Ed.)
    Abstract We present a comprehensive study on the postbuckling response of nonlocal structures performed by means of a frame-invariant fractional-order continuum theory to model the long-range (nonlocal) interactions. The use of fractional calculus facilitates an energy-based approach to nonlocal elasticity that plays a fundamental role in the present study. The underlying fractional framework enables mathematically, physically, and thermodynamically consistent integral-type constitutive models that, in contrast to the existing integer-order differential approaches, allow the nonlinear buckling and postbifurcation analyses of nonlocal structures. Furthermore, we present the first application of the Koiter’s asymptotic method to investigate postbifurcation branches of nonlocal structures. Finally, the theoretical framework is applied to study the postbuckling behavior of slender nonlocal plates. Both qualitative and quantitative analyses of the influence that long-range interactions bear on postbuckling response are undertaken. Numerical studies are carried out using a 2D fractional-order finite element method (f-FEM) modified to include a combination of the Newton–Raphson and a path-following arc-length iterative methods to solve the system of nonlinear algebraic equations that govern the equilibrium beyond the critical points. The present framework provides a general foundation to investigate the postbuckling response of potentially any type of nonlocal structure. 
    more » « less