skip to main content


Title: A generalized fractional-order elastodynamic theory for non-local attenuating media
This study presents a generalized elastodynamic theory, based on fractional-order operators, capable of modelling the propagation of elastic waves in non-local attenuating solids and across complex non-local interfaces. Classical elastodynamics cannot capture hybrid field transport processes that are characterized by simultaneous propagation and diffusion. The proposed continuum mechanics formulation, which combines fractional operators in both time and space, offers unparalleled capabilities to predict the most diverse combinations of multiscale, non-local, dissipative and attenuating elastic energy transport mechanisms. Despite the many features of this theory and the broad range of applications, this work focuses on the behaviour and modelling capabilities of the space-fractional term and on its effect on the elastodynamics of solids. We also derive a generalized fractional-order version of Snell’s Law of refraction and of the corresponding Fresnel’s coefficients. This formulation allows predicting the behaviour of fully coupled elastic waves interacting with non-local interfaces. The theoretical results are validated via direct numerical simulations.  more » « less
Award ID(s):
1825837 1761423
NSF-PAR ID:
10180489
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
Volume:
476
Issue:
2238
ISSN:
1364-5021
Page Range / eLocation ID:
20200200
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    This study presents the formulation, the numerical solution, and the validation of a theoretical framework based on the concept of variable-order mechanics and capable of modeling dynamic fracture in brittle and quasi-brittle solids. More specifically, the reformulation of the elastodynamic problem via variable and fractional-order operators enables a unique and extremely powerful approach to model nucleation and propagation of cracks in solids under dynamic loading. The resulting dynamic fracture formulation is fully evolutionary, hence enabling the analysis of complex crack patterns without requiring any a priori assumption on the damage location and the growth path, and without using any algorithm to numerically track the evolving crack surface. The evolutionary nature of the variable-order formalism also prevents the need for additional partial differential equations to predict the evolution of the damage field, hence suggesting a conspicuous reduction in complexity and computational cost. Remarkably, the variable-order formulation is naturally capable of capturing extremely detailed features characteristic of dynamic crack propagation such as crack surface roughening as well as single and multiple branching. The accuracy and robustness of the proposed variable-order formulation are validated by comparing the results of direct numerical simulations with experimental data of typical benchmark problems available in the literature.

     
    more » « less
  2. The presence of non-local interactions and intermittent signals in the homogeneous isotropic turbulence grant multi-point statistical functions a key role in formulating a new generation of large-eddy simulation (LES) models of higher fidelity. We establish a tempered fractional-order modelling framework for developing non-local LES subgrid-scale models, starting from the kinetic transport. We employ a tempered Lévy-stable distribution to represent the source of turbulent effects at the kinetic level, and we rigorously show that the corresponding turbulence closure term emerges as the tempered fractional Laplacian, $(\varDelta +\lambda )^{\alpha } (\cdot )$ , for $\alpha \in (0,1)$ , $\alpha \neq \frac {1}{2}$ and $\lambda >0$ in the filtered Navier–Stokes equations. Moreover, we prove the frame invariant properties of the proposed model, complying with the subgrid-scale stresses. To characterize the optimum values of model parameters and infer the enhanced efficiency of the tempered fractional subgrid-scale model, we develop a robust algorithm, involving two-point structure functions and conventional correlation coefficients. In an a priori statistical study, we evaluate the capabilities of the developed model in fulfilling the closed essential requirements, obtained for a weaker sense of the ideal LES model (Meneveau, Phys. Fluids , vol. 6, issue 2, 1994, pp. 815–833). Finally, the model undergoes the a posteriori analysis to ensure the numerical stability and pragmatic efficiency of the model. 
    more » « less
  3. Abstract

    Two‐dimensional materials such as graphene have become crucial components of most state‐of‐the‐art plasmonic devices. The possibility of not only generating plasmons in the terahertz regime, but also tuning them in real time via chemical doping or electrical gating make them compelling materials for engineers seeking to build accurate sensors. Thus, the faithful modeling of the propagation of linear waves in a layered, periodic structure with such materials at the interfaces is of paramount importance in many branches of the applied sciences. In this paper, we present a novel formulation of the problem featuring surface currents to model the two‐dimensional materials which not only is free of the artificial singularities present in related approaches, but also can be used to deliver a proof of existence, uniqueness, and analytic dependence of solutions. We advocate for a surface integral formulation which is phrased in terms of well‐chosen Impedance–Impedance Operators that are immune to the Dirichlet eigenvalues which plague the Dirichlet–Neumann Operators that appear in classical formulations. With a High‐Order Perturbation of Surfaces approach we are able to give a straightforward demonstration of this new well‐posedness result which only requires the verification that a finite collection of explicitly stated transcendental expressions be nonzero. We further illustrate the utility of this formulation by displaying results of a High‐Order Spectral numerical implementation which is flexible, rapid, and robust.

     
    more » « less
  4. Variable-order fractional operators were conceived and mathematically formalized only in recent years. The possibility of formulating evolutionary governing equations has led to the successful application of these operators to the modelling of complex real-world problems ranging from mechanics, to transport processes, to control theory, to biology. Variable-order fractional calculus (VO-FC) is a relatively less known branch of calculus that offers remarkable opportunities to simulate interdisciplinary processes. Recognizing this untapped potential, the scientific community has been intensively exploring applications of VO-FC to the modelling of engineering and physical systems. This review is intended to serve as a starting point for the reader interested in approaching this fascinating field. We provide a concise and comprehensive summary of the progress made in the development of VO-FC analytical and computational methods with application to the simulation of complex physical systems. More specifically, following a short introduction of the fundamental mathematical concepts, we present the topic of VO-FC from the point of view of practical applications in the context of scientific modelling. 
    more » « less
  5. Abstract We present a theoretical and computational framework based on fractional calculus for the analysis of the nonlocal static response of cylindrical shell panels. The differ-integral nature of fractional derivatives allows an efficient and accurate methodology to account for the effect of long-range (nonlocal) interactions in curved structures. More specifically, the use of frame-invariant fractional-order kinematic relations enables a physically, mathematically, and thermodynamically consistent formulation to model the nonlocal elastic interactions. To evaluate the response of these nonlocal shells under practical scenarios involving generalized loads and boundary conditions, the fractional-finite element method (f-FEM) is extended to incorporate shell elements based on the first-order shear-deformable displacement theory. Finally, numerical studies are performed exploring both the linear and the geometrically nonlinear static response of nonlocal cylindrical shell panels. This study is intended to provide a general foundation to investigate the nonlocal behavior of curved structures by means of fractional-order models. 
    more » « less