skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 11, 2026

Title: Cauchy problems for Einstein equations in three-dimensional spacetimes
Abstract We analyze existence and properties of solutions of two-dimensional general relativistic initial data sets with a negative cosmological constant, both on spacelike and characteristic surfaces. A new family of such vacuum spacelike data parameterised by poles at the conformal boundary at infinity is constructed. We review the notions of global Hamiltonian charges, emphasizing the difficulties arising in this dimension, both in a spacelike and characteristic setting. One or two, depending upon the topology, lower bounds for energy in terms of angular momentum, linear momentum, and center of mass are established.  more » « less
Award ID(s):
1928930
PAR ID:
10600028
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IOP Publishing Ltd
Date Published:
Journal Name:
Classical and Quantum Gravity
Volume:
42
Issue:
8
ISSN:
0264-9381
Page Range / eLocation ID:
085010
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Quasielastic C12(e,e′p) scattering was measured at spacelike 4-momentum transfer squared Q2=8, 9.4, 11.4, and 14.2  (GeV/c)2, the highest ever achieved to date. Nuclear transparency for this reaction was extracted by comparing the measured yield to that expected from a plane-wave impulse approximation calculation without any final state interactions. The measured transparency was consistent with no Q2 dependence, up to proton momenta of 8.5  GeV/c, ruling out the quantum chromodynamics effect of color transparency at the measured Q2 scales in exclusive (e,e′p) reactions. These results impose strict constraints on models of color transparency for protons. 
    more » « less
  2. A<sc>bstract</sc> In perturbative string theory, one is generally interested in asymptotic observables, such as the S-matrix in flat spacetime, and boundary correlation functions in anti-de Sitter spacetime. However, there are backgrounds in which such observables do not exist. We study examples of such backgrounds in 1 + 1 dimensional string theory. In these examples, the Liouville wall accelerates and can become spacelike in the past and/or future. When that happens, the corresponding null infinity, at which the standard scattering states are defined, is shielded by the Liouville wall. We compute scattering and particle production amplitudes in these backgrounds in the region in parameter space where the wall remains timelike, and discuss the continuation of this picture to the spacelike regime. We also discuss the physics from the point of view of the dynamics of free fermions in backgrounds with a time-dependent Fermi surface. 
    more » « less
  3. Abstract In this work we study the long-lived post-merger gravitational wave signature of a boson-star binary coalescence. We use full numerical relativity to simulate the post-merger and track the gravitational afterglow over an extended period of time. We implement recent innovations for the binary initial data, which significantly reduce spurious initial excitations of the scalar field profiles, as well as a measure for the angular momentum that allows us to track the total momentum of the spatial volume, including the curvature contribution. Crucially, we find the afterglow to last much longer than the spin-down timescale. This prolongedgravitational wave afterglowprovides a characteristic signal that may distinguish it from other astrophysical sources. 
    more » « less
  4. A<sc>bstract</sc> We study black holes in two and three dimensions that have spacelike curvature singularities behind horizons. The 2D solutions are obtained by dimensionally reducing certain 3D black holes, known as quantum BTZ solutions. Furthermore, we identify the corresponding dilaton potential and show how it can arise from a higher-dimensional theory. Finally, we show that the rotating BTZ black hole develops a singular inner horizon once quantum effects are properly accounted for, thereby solidifying strong cosmic censorship for all known cases. 
    more » « less
  5. Abstract Tayler instability of toroidal magnetic fieldsBϕis broadly invoked as a trigger for turbulence and angular momentum transport in stars. This paper presents a systematic revision of the linear stability analysis for a rotating, magnetized, and stably stratified star. For plausible configurations ofBϕ, instability requires diffusive processes: viscosity, magnetic diffusivity, or thermal/compositional diffusion. Our results reveal a new physical picture, demonstrating how different diffusive effects independently trigger instability of two types of waves in the rotating star: magnetostrophic waves and inertial waves. It develops via overstability of the waves, whose growth rate sharply peaks at some characteristic wavenumbers. We determine instability conditions for each wave branch and find the characteristic wavenumbers. The results are qualitatively different for stars with magnetic Prandtl numberPm≪ 1 (e.g., the Sun) andPm≫ 1 (e.g., protoneutron stars). The parameter dependence of unstable modes suggests a nonuniversal scaling of the possible Tayler–Spruit dynamo. 
    more » « less