The ratio of the electric to magnetic form factors of the proton, μpGEp/GMp, has been measured for elastic electron-proton scattering with polarized beam and target up to four-momentum transfer squared Q2=5.66(GeV/c)2 using double spin asymmetry for target spin orientation aligned nearly perpendicular to the beam momentum direction. This measurement of μpGEp/GMp agrees with the Q2 dependence of previous recoil polarization data and reconfirms the discrepancy at high Q2 between the Rosenbluth and the polarization-transfer method with a different measurement technique and systematic uncertainties uncorrelated to those of the recoil-polarization measurements. The form factor ratio at Q2=2.06(GeV/c)2 has been measured as μpGEp/GMp=0.720±0.176stat±0.039sys, which is in agreement with an earlier measurement using the polarized target technique at similar kinematics. The form factor ratio at Q2=5.66(GeV/c)2 has been determined as μpGEp/GMp=0.244±0.353stat±0.013sys, which represents the highest Q2 measurement reached using double spin asymmetries with polarized target to date. 
                        more » 
                        « less   
                    
                            
                            Ruling out Color Transparency in Quasielastic 12C(e,e'p) up to Q2 of 14.2 (GeV/c)2
                        
                    
    
            Quasielastic C12(e,e′p) scattering was measured at spacelike 4-momentum transfer squared Q2=8, 9.4, 11.4, and 14.2  (GeV/c)2, the highest ever achieved to date. Nuclear transparency for this reaction was extracted by comparing the measured yield to that expected from a plane-wave impulse approximation calculation without any final state interactions. The measured transparency was consistent with no Q2 dependence, up to proton momenta of 8.5  GeV/c, ruling out the quantum chromodynamics effect of color transparency at the measured Q2 scales in exclusive (e,e′p) reactions. These results impose strict constraints on models of color transparency for protons. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2013002
- PAR ID:
- 10291797
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Date Published:
- Journal Name:
- Physical review letters
- Volume:
- 126
- Issue:
- 8
- ISSN:
- 1092-0145
- Page Range / eLocation ID:
- 082301
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Observation of the onset of color transparency in baryons would provide a new means of studying the nuclear strong force and would be the first clear evidence of baryons transforming into a color-neutral point-like size in the nucleus as predicted by quantum chromodynamics. Recent C(e,e′p) results from electron-scattering did not observe the onset of color transparency (CT) in protons up to spacelike four-momentum transfers squared, Q2=14.2 GeV2. The traditional methods of searching for CT in (e,e′p) scattering use heavy targets favoring kinematics with already initially reduced final state interactions (FSIs) such that any CT effect that further reduces FSIs will be small. The reasoning behind this choice is the difficulty in accounting for all FSIs. D(e,e′p)n, on the other hand, has well-understood FSI contributions from double scattering with a known dependence on the kinematics and can show an increased sensitivity to hadrons in point-like configurations. Double scattering is the square of the re-scattering amplitude in which the knocked-out nucleon interacts with the spectator nucleon, a process that is suppressed in the presence of point-like configurations and is particularly well-studied for the deuteron. This suppression yields a quadratic sensitivity to CT effects and is strongly dependent on the choice of kinematics. Here, we describe a possible Jefferson National Accelerator Facility (JLab) electron-scattering experiment that utilizes these kinematics and explores the potential signal for the onset of CT with enhanced sensitivity as compared to recent experiments.more » « less
- 
            The paper proposes to study the onset of color transparency in hard exclusive reactions in the backward regime. Guided by the encouraging Jefferson Laboratory (JLab) results on backward π and ω electroproduction data at moderate virtuality Q2, which may be interpreted as the signal of an early scaling regime, where the scattering amplitude factorizes in a hard coefficient function convoluted with nucleon to meson transition distribution amplitudes, the study shows that investigations of these channels on nuclear targets opens a new opportunity to test the appearance of nuclear color transparency for a fast-moving nucleon.more » « less
- 
            We present measurements of the cross section for antineutrino charged-current quasielasticlike scattering on hydrocarbon using the medium energy NuMI wide-band neutrino beam peaking at antineutrino energy hE¯νi ∼ 6 GeV. The measurements are presented as a function of the longitudinal momentum (pjj) and transverse momentum (pT) of the final state muon. This work complements our previously reported high statistics measurement in the neutrino channel and extends the previous antineutrino measurement made in a low energy beam at hE¯νi ∼ 3.5 GeV out to pT of 2.5 GeV=c. Current theoretical models do not completely describe the data in this previously unexplored high pT region. The single differential cross section as a function of four-momentum transfer (Q2 QE) now extends to 4 GeV2 with high statistics. The cross section as a function of Q2 QE shows that the tuned simulations developed by the MINERvA Collaboration that agreed well with the low energy beam measurements do not agree as well with the medium energy beam measurements. Newer neutrino interaction models such as the GENIE v3 tunes are better able to simulate the high Q2 QE region.more » « less
- 
            null (Ed.)Abstract The invariant differential cross section of inclusive $$\omega (782)$$ ω ( 782 ) meson production at midrapidity ( $$|y|<0.5$$ | y | < 0.5 ) in pp collisions at $$\sqrt{s}=7\,\hbox {TeV}$$ s = 7 TeV was measured with the ALICE detector at the LHC over a transverse momentum range of $$2< p_{\mathrm {T}}< 17\,\hbox {GeV}/c$$ 2 < p T < 17 GeV / c . The $$\omega $$ ω meson was reconstructed via its $$\omega \rightarrow \pi ^+\pi ^-\pi ^0$$ ω → π + π - π 0 decay channel. The measured $$\omega $$ ω production cross section is compared to various calculations: PYTHIA 8.2 Monash 2013 describes the data, while PYTHIA 8.2 Tune 4C overestimates the data by about 50%. A recent NLO calculation, which includes a model describing the fragmentation of the whole vector-meson nonet, describes the data within uncertainties below $$6\,\hbox {GeV}/c$$ 6 GeV / c , while it overestimates the data by up to 50% for higher $$p_{\mathrm {T}}$$ p T . The $$\omega /\pi ^0$$ ω / π 0 ratio is in agreement with previous measurements at lower collision energies and the PYTHIA calculations. In addition, the measurement is compatible with transverse mass scaling within the measured $$p_{\mathrm {T}}$$ p T range and the ratio is constant with $$C^{\omega /\pi ^{0}}= 0.67 \pm 0.03 \text {~(stat)~} \pm 0.04 \text {~(sys)~}$$ C ω / π 0 = 0.67 ± 0.03 (stat) ± 0.04 (sys) above a transverse momentum of $$2.5\,\hbox {GeV}/c$$ 2.5 GeV / c .more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    