We develop a set of tools for doing computations in and of (partially) wrapped Fukaya categories. In particular, we prove (1) a descent (cosheaf) property for the wrapped Fukaya category with respect to so-called Weinstein sectorial coverings and (2) that the partially wrapped Fukaya category of a Weinstein manifold with respect to a mostly Legendrian stop is generated by the cocores of the critical handles and the linking disks to the stop. We also prove (3) a ‘stop removal equals localization’ result, and (4) that the Fukaya–Seidel category of a Lefschetz fibration with Liouville fiber is generated by the Lefschetz thimbles. These results are derived from three main ingredients, also of independent use: (5) a Künneth formula (6) an exact triangle in the Fukaya category associated to wrapping a Lagrangian through a Legendrian stop at infinity and (7) a geometric criterion for when a pushforward functor between wrapped Fukaya categories of Liouville sectors is fully faithful.
more »
« less
This content will become publicly available on March 1, 2026
Duality and Kernels in Microlocal Geometry
Abstract We study the dualizability of sheaves on manifolds with isotropic singular supports $$\operatorname{Sh}_\Lambda (M)$$ and microsheaves with isotropic supports $$\operatorname{\mu sh}_\Lambda (\Lambda )$$ and obtain a classification result of colimit-preserving functors by convolutions of sheaf kernels. Moreover, for sheaves with isotropic singular supports and compact supports $$\operatorname{Sh}_\Lambda ^{b}(M)_{0}$$, the standard categorical duality and Verdier duality are related by the wrap-once functor, which is the inverse Serre functor in proper objects, and we thus show that the Verdier duality extends naturally to all compact objects $$\operatorname{Sh}_\Lambda ^{c}(M)_{0}$$ when the wrap-once functor is an equivalence, for instance, when $$\Lambda $$ is a full Legendrian stop or a swappable Legendrian stop.
more »
« less
- Award ID(s):
- 1928930
- PAR ID:
- 10600030
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- International Mathematics Research Notices
- Volume:
- 2025
- Issue:
- 6
- ISSN:
- 1073-7928
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract For each integer $$t$$ a tensor category $$\mathcal{V}_t$$ is constructed, such that exact tensor functors $$\mathcal{V}_t\rightarrow \mathcal{C}$$ classify dualizable $$t$$-dimensional objects in $$\mathcal{C}$$ not annihilated by any Schur functor. This means that $$\mathcal{V}_t$$ is the “abelian envelope” of the Deligne category $$\mathcal{D}_t=\operatorname{Rep}(GL_t)$$. Any tensor functor $$\operatorname{Rep}(GL_t)\longrightarrow \mathcal{C}$$ is proved to factor either through $$\mathcal{V}_t$$ or through one of the classical categories $$\operatorname{Rep}(GL(m|n))$$ with $m-n=t$. The universal property of $$\mathcal{V}_t$$ implies that it is equivalent to the categories $$\operatorname{Rep}_{\mathcal{D}_{t_1}\otimes \mathcal{D}_{t_2}}(GL(X),\epsilon )$$, ($$t=t_1+t_2$$, $$t_1$$ not an integer) suggested by Deligne as candidates for the role of abelian envelope.more » « less
-
We introduce the conormal fan of a matroid M \operatorname {M} , which is a Lagrangian analog of the Bergman fan of M \operatorname {M} . We use the conormal fan to give a Lagrangian interpretation of the Chern–Schwartz–MacPherson cycle of M \operatorname {M} . This allows us to express the h h -vector of the broken circuit complex of M \operatorname {M} in terms of the intersection theory of the conormal fan of M \operatorname {M} . We also develop general tools for tropical Hodge theory to prove that the conormal fan satisfies Poincaré duality, the hard Lefschetz theorem, and the Hodge–Riemann relations. The Lagrangian interpretation of the Chern–Schwartz–MacPherson cycle of M \operatorname {M} , when combined with the Hodge–Riemann relations for the conormal fan of M \operatorname {M} , implies Brylawski’s and Dawson’s conjectures that the h h -vectors of the broken circuit complex and the independence complex of M \operatorname {M} are log-concave sequences.more » « less
-
Abstract Let M be a complete Riemannian manifold and suppose {p\in M} . For each unit vector {v\in T_{p}M} , the Jacobi operator , {\mathcal{J}_{v}:v^{\perp}\rightarrow v^{\perp}} is the symmetric endomorphism, {\mathcal{J}_{v}(w)=R(w,v)v} . Then p is an isotropic point if there exists a constant {\kappa_{p}\in{\mathbb{R}}} such that {\mathcal{J}_{v}=\kappa_{p}\operatorname{Id}_{v^{\perp}}} for each unit vector {v\in T_{p}M} . If all points are isotropic, then M is said to be isotropic; it is a classical result of Schur that isotropic manifolds of dimension at least 3 have constant sectional curvatures. In this paper we consider almost isotropic manifolds , i.e. manifolds having the property that for each {p\in M} , there exists a constant {\kappa_{p}\in\mathbb{R}} such that the Jacobi operators {\mathcal{J}_{v}} satisfy {\operatorname{rank}({\mathcal{J}_{v}-\kappa_{p}\operatorname{Id}_{v^{\perp}}}% )\leq 1} for each unit vector {v\in T_{p}M} . Our main theorem classifies the almost isotropic simply connected Kähler manifolds, proving that those of dimension {d=2n\geqslant 4} are either isometric to complex projective space or complex hyperbolic space or are totally geodesically foliated by leaves isometric to {{\mathbb{C}}^{n-1}} .more » « less
-
We study Legendrian surfaces determined by cubic planar graphs. Graphs with distinct chromatic polynomials determine surfaces that are not Legendrian isotopic, thus giving many examples of non-isotopic Legendrian surfaces with the same classical invariants. The Legendrians have no exact Lagrangian fillings, but have many interesting non-exact fillings. We obtain these results by studying sheaves on a three-ball with microsupport in the surface. The moduli of such sheaves has a concrete description in terms of the graph and a beautiful embedding as a holomorphic Lagrangian submanifold of a symplectic period domain, a Lagrangian that has appeared in the work of Dimofte–Gabella–Goncharov. We exploit this structure to find conjectural open Gromov–Witten invariants for the non-exact filling, following Aganagic–Vafa.more » « less
An official website of the United States government
