Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract A protocol for the iterative decarboxylative cross‐coupling of carboxylic acids with dehydroalanine (Dha) allyl esters is described. A procedure for decarboxylative Giese addition to dehydroalanine allyl esters that avoids 5‐exo‐trig radical cyclization onto the allyl moiety was developed. This results in complex, substituted alanine allyl esters that are poised for a second decarboxylative coupling. Thus, following the photocatalytic decarboxylative alkylation of Dha, the resulting amino acid allyl esters were subjected to decarboxylative allylation under metallaphotoredox/palladium catalysis. The Giese addition and decarboxylative allylation can be performed in one pot simply by triggering the decarboxylative allylation by addition of a palladium catalyst. These one‐pot decarboxylative couplings leverage temporally controlled carboxylate formation to allow controlled, sequential photoredox activation of the carboxylates. The ability to perform sequential, one‐pot photoredox C─C bond formations obviates the need for isolation of intermediates. The final products of these coupling reactions are densely functionalized homoallylic amines and/or unsymmetric, differentiated 1,3‐diamines, both known for their high synthetic value.more » « less
-
Abstract The rising demand and financial costs of noble transition metal catalysts have emphasized the need for sustainable catalytic approaches. Over the past few years, base‐metal catalysts have emerged as ideal candidates to replace their noble‐metal counterparts because of their abundance and easiness of handling. Despite the significant advancements achieved with precious transition metals, earth‐abundant cobalt catalysts have emerged as efficient alternatives for allylic substitution reactions. In this review, allylic alkylations at sp3‐carbon centers mediated by cobalt will be discussed, with a special focus on the mechanistic features, scope, and limitations.more » « less
-
Free, publicly-accessible full text available July 27, 2026
-
Free, publicly-accessible full text available July 25, 2026
-
Free, publicly-accessible full text available April 18, 2026
-
A photocatalytic methodology for the single step synthesis of γ-ketoacids from α-ketoacids has been developed. This method employs maleic anhydrides as traceless synthetic equivalents of acrylic acids, achieving a selective cross-coupling via a dual decarboxylative strategy, where molecular CO2 is released as the only waste byproduct. The method has also been expanded to incorporate a highly regioselective, 3-component coupling with various alcohols to access functionalized γ-ketoesters.more » « less
-
The selective installation of fluorine-containing groups into biologically relevant molecules has been used as a common strategy for the development of pharmaceutically active molecules. However, the selective incorporation of gem-difluoromethylene groups next to sterically demanding secondary and tertiary alkyl groups remains a challenge. Herein, we report the first cobalt-catalyzed regioselective difluoroalkylation of carboxylic acid salts. The reaction allows for the facile construction of various difluoroalkylated products in good yields tolerating a wide range of functionalities on either reaction partner. The potential of the method is illustrated by the late-stage functionalization of molecules of biological relevance. Mechanistic studies support the in situ formation of a cobalt(I) species and the intermediacy of difluoroalkyl radicals, thus suggesting a Co(I)/Co(II)/Co(III) catalytic cycle.more » « less
An official website of the United States government
