Site U1592 (proposed Site CSK-09A) is located ~10 km southeast of Anhydros Island in the Anafi Basin at 693 meters below sea level (mbsl) (Figure F1). The aim at the site was to penetrate the entire volcano-sedimentary fill as far as the Alpine basement to reconstruct the evolution of the Anafi Basin: history of subsidence, presence of volcanic event layers in the basin sediments, and links between volcanism and crustal tectonics. We drilled to a maximum recovery depth of 519.8 meters below seafloor (mbsf) in two holes (U1592A and U1592B), terminating in limestone basement (all depths below seafloor [mbsf] are given using the core depth below seafloor, Method A [CSF-A], scale, except in Operations where the drilling depth below seafloor [DSF] scale is used). Average core recoveries were 71% (Hole U1592A) and 50% (Hole U1592B). The Anafi Basin potentially recorded the full volcanic history of Santorini (and any older centers) since rift inception, but it was envisaged to probably also contain few eruptive products from Kolumbo. Drilling enabled reconstruction of the volcanic, sedimentary, and tectonic histories of the Anafi Basin, allowing us to compare its evolution with that of the Anhydros Basin. The site was also chosen to develop a core-log-seismic integration stratigraphy and compare it with the recently published seismic stratigraphy for the basin (Preine et al., 2022a, 2022b) and the paleotectonic reconstruction of the region (Nomikou et al., 2016, 2018). The site transects six seismic packages of the Anafi rift basin, as well as the onlap surfaces between them (Nomikou et al., 2016, 2018; Preine et al., 2022a) (Figure F2). The Anafi Basin is crossed by many seismic profiles obtained in campaigns between 2006 and 2019, many of them multichannel (Hübscher et al., 2015; Nomikou et al., 2016, 2018). It is included within the area of the 2015 PROTEUS seismic tomography experiment, during which subbottom profiling, gravity, and magnetic data were also recorded (Hooft et al., 2017). The basin bathymetry had been studied in several marine campaigns, and fault distributions and throws had been mapped (Nomikou et al., 2016; Hooft et al., 2017). Previously published analyses of the seismic data suggested the following possible interpretations (from the bottom up; Preine et al., 2022a, 2022b): Units U1 and U2: sediment packages predating Santorini and Kolumbo volcanism; Unit U3: sediments and the products of the early Kolumbo volcanism and some of the Kolumbo cones; Unit U4: sediments associated with a major rift pulse; and Units U5 and U6: sediments and the products of Santorini activity, some of the Kolumbo cones, and the later eruptions of Kolumbo including the 1650 Common Era (CE) eruption. Units U3–U6 were believed to be of Pleistocene age, and Units U1 and U2 were believed to be possibly Pliocene. The site enabled us to test these interpretations by using the cores to reconstruct a near-complete volcanic stratigraphy consistent with both onshore and offshore constraints and pinned by chronological markers from biostratigraphy, magnetostratigraphy, and sapropel records. Benthic foraminifera from fine-grained sediments provided estimates of paleowater depths and, through integration with seismic profiles and chronologic data, of time-integrated basin subsidence rates. Coring at Site U1592 in the Anafi Basin addressed scientific Objectives 1–4 and 6 of the Expedition 398 Scientific Prospectus (Druitt et al., 2022). It was complemented by Site U1589 in the Anhydros Basin because each basin taps a different sediment distributary branch of the Christiana-Santorini-Kolumbo volcanic system. 
                        more » 
                        « less   
                    This content will become publicly available on June 13, 2026
                            
                            Data report: core-seismic integration and time-depth relationships at IODP Expedition 398 Hellenic Arc Volcanic Field sites
                        
                    
    
            We present seismic two-way traveltime depth relationships for all sites drilled by the International Ocean Discovery Program Expedition 398, Hellenic Arc Volcanic Field, using high-resolution multichannel seismic and core data. First, we filter and interpolate P-wave velocity and density data taken from (1) whole-round cores and (2) discrete measurements on half-round cores. We establish the reliability of shipboard density measurements by comparing them with in situ logging data. Using these validated measurements, we estimate acoustic impedance and synthetic seismograms. By correlating synthetic seismograms with those extracted from multichannel seismic profiles at each site, we establish time-depth relationships. We assess the quality of these relationships by examining the alignment of major lithologic boundaries with prominent unconformities or correlated conformities in the reflection seismic data. The results of this report facilitate the mapping of core data onto the multichannel seismic profiles at each site, allowing for spatial tracing of core data across the Christiana-Santorini-Kolumbo volcanic field. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10600288
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- International Ocean Discovery Program
- Date Published:
- Journal Name:
- Proceedings of the International Ocean Discovery Program Expedition reports
- Volume:
- 398
- Issue:
- 201
- ISSN:
- 2377-3189
- ISBN:
- 978-1-954252-91-2
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            The principal aim at Site U1589 (proposed Site CSK-01A) was to reconstruct the evolution of the Anhydros Basin, including its history of subsidence, as well as to document the presence of volcanic event layers in the basin sediments and draw conclusions regarding the links between volcanism and crustal tectonics. The site is located about 10 km southwest of Amorgos Island at 484 meters below sea level (mbsl) (Figure F1). The drill site targeted the volcano-sedimentary fill of the Anhydros Basin. We received permission from the International Ocean Discovery Program (IODP) Environmental Protection and Safety Panel to touch the Alpine basement using an advanced piston corer/extended core barrel/rotary core barrel (APC/XCB/RCB) drilling strategy. The site involved three holes (U1589A–U1589C) and terminated in basement limestone at 612.4 meters below seafloor (mbsf) (all depths below seafloor are given using the core depth below seafloor, Method A [CSF-A] scale, except in Operations, where the drilling depth below seafloor [DSF] scale is used). Core recovery was good in Holes U1589A (78%) and U1589B (87%) and poor in Hole U1589C (24%). Site U1589 was chosen to sample the eruptive histories of both Santorini and the Kolumbo chain and was expected to yield volcaniclastics from many Kolumbo eruptions and the major Santorini eruptions. Many deposits from smaller Santorini eruptions were not expected at this distance from the volcano, in part due to flow blocking by the Kolumbo volcanic chain. Santorini has been active since 0.65 Ma, with many large explosive eruptions since about 0.36 Ma (Druitt et al., 2016). Kolumbo Volcano was known from seismic profiles to have had at least five eruptions (Hübscher et al., 2015), the last of which was in 1650 Common Era (CE) and killed 70 people on Santorini (Fuller et al., 2018). Seismic profiles provided constraints on the relative ages of the Kolumbo cones (Preine et al., 2022c) but not on the absolute ages. The site offered a near-continuous time series of volcanism in the area since rift inception. The site was also chosen to develop a core-log-seismic integration stratigraphy and compare it with the recently published seismic stratigraphy for the basin (Preine et al., 2022a) and the paleotectonic reconstruction of the region (Nomikou et al., 2016, 2018) to promote a holistic view of the Anhydros Basin evolution (Figure F2). The site transects all six seismic packages of the Anhydros rift basin, as well as the onlap surfaces between them (Nomikou et al., 2016, 2018; Preine et al., 2022a). The anticipated lithologies were undisturbed hemipelagic muds, volcaniclastics, turbidites, and finally continental basement rocks. A gravity core recovered 7 km to the east indicated that the uppermost sediments on site would consist of hemipelagic muds and volcaniclastic layers, as well as sapropels (Kutterolf et al., 2021). The Anhydros Basin is crossed by many seismic profiles obtained in campaigns between 2006 and 2019, many of them multichannel (Hübscher et al., 2015; Nomikou et al., 2016, 2018), and its southwestern part is included within the area of the 2015 PROTEUS seismic tomography experiment, during which subbottom profiling, gravity, and magnetic data were also recorded (Hooft et al., 2017). The basin bathymetry had been studied in several marine campaigns, and fault distributions and throws had been mapped (Nomikou et al., 2016; Hooft et al., 2017). Previously published analyses of the seismic data suggested the following possible interpretations (from the bottom up; Preine et al., 2022b, 2022c): Units U1 and U2: sediment packages predating Santorini and Kolumbo volcanism; Unit U3: sediments and the products of the early Kolumbo volcanism and some of the Kolumbo cones; Unit U4: sediments associated with a major rift pulse; and Units U5 and U6: sediments and the products of Santorini activity, some of the Kolumbo cones, and the later eruptions of Kolumbo including the 1650 CE eruption. Units U3–U6 were believed to be of Pleistocene age, and Units U1 and U2 were believed to be of possible Pliocene age. The site enabled us to test these interpretations by using the cores to reconstruct a near-complete volcanic stratigraphy consistent with both onshore and offshore constraints and pinned by chronological markers from biostratigraphy, magnetostratigraphy, and sapropel records. Benthic foraminifera from fine-grained sediments provided estimates of paleowater depths and, via integration with seismic profiles and chronologic data, of time-integrated basin subsidence rates. Coring at Site U1589 in the Anhydros Basin addressed scientific Objectives 1–4 and 6 of the Expedition 398 Scientific Prospectus (Druitt et al., 2022). It was complemented by Site U1592 in the Anafi Basin because each basin taps a different sediment distributary branch of the Christiana-Santorini-Kolumbo volcanic system.more » « less
- 
            Site U1599 is located ~6 km north of Anafi Island within the upper reaches of the Anafi Basin at a water depth of 592 meters below sea level (mbsl) (Figure F1). Permission to drill in this location was granted by the International Ocean Discovery Program (IODP) Environmental Protection and Safety Panel during the expedition (proposed Site CSK-22A). Three holes (U1599A–U1599C) were drilled to a maximum recovery depth of 698.1 meters below seafloor (mbsf) (all depths below seafloor are given using the core depth below seafloor, Method A [CSF-A] scale, except in Operations, where the drilling depth below seafloor [DSF] scale is used), with average hole core recoveries ranging 51%–83% (Figure F2). Whereas Site U1592 is situated on the axis of the Anafi Basin and penetrated a thick basin fill including mass-transported material, Site U1599 is located on the southeast margin of the basin. It was chosen to offer a condensed sequence of tephra without quantities of mass-wasting debris. As such, it provided a complete stratigraphy of volcanic tephra from Santorini and Kolumbo. The same six seismic units (U1–U6, from the bottom up; Preine et al., 2022a, 2022b) present at Site U1592 are present at Site U1599. Site U1599 is located within the area of the 2015 PROTEUS seismic tomography experiment, during which subbottom profiling, gravity, and magnetic data were also recorded (Hooft et al., 2017). Drilling at Site U1599 enabled us to reconstruct a near-complete volcanic stratigraphy consistent with both onshore and offshore constraints and pinned by chronological markers from biostratigraphy, magnetostratigraphy, and sapropel records. Benthic foraminifera from fine-grained sediments provided estimates of paleowater depths and, via integration with seismic profiles and chronologic data, of time-integrated basin subsidence rates. Drilling in the Anafi Basin addressed scientific Objectives 1–4 and 6 of the Expedition 398 Scientific Prospectus (Druitt et al., 2022). It was complemented by Site U1589 in the Anhydros Basin because each basin tapped a different sediment distributary branch of the Christiana-Santorini-Kolumbo volcanic system.more » « less
- 
            Site U1593 (proposed Site CSK-04C) is located 8 km northwest of the submarine Kolumbo caldera on its flank in the Anhydros Basin at a water depth of 402 meters below sea level (mbsl) (Figure F1). It lies on Seismic Line HH06-44, offset 600 m northeast from Seismic Line HH06-22 (Figure F2). We drilled to a maximum recovery depth of 250.9 meters below seafloor (mbsf; all depths below seafloor are given using the core depth below seafloor, Method A [CSF-A], scale, except in Operations where the drilling depth below seafloor [DSF] scale is used) in three holes (U1593A–U1593C) with average core recoveries of 60%, 67%, and <1%, respectively. The seismic profiles across the Kolumbo edifice reveal five units interpreted as Kolumbo-derived volcaniclastics (K1 to K5 from the base up), with Seismic Unit K5 representing the 1650 Common Era (CE) eruption (Hübscher et al., 2015; Preine et al., 2022). The submarine cones northeast of Kolumbo postdate Unit K2 on seismic profiles, but their products were not expected to be prominent in our drill cores. The aim of drilling on the flanks of Kolumbo was to penetrate the different seismically recognized volcanic eruption units from that volcano (K1–K3 and K5 or their thin, lateral equivalents) as well as many eruption units from Santorini and traces from the submarine cones northeast of Kolumbo. This enabled characterization of the products of the Kolumbo eruptions and construction of a coherent stratigraphy for Santorini and the submarine Kolumbo volcano chain together. The anticipated lithologies were volcaniclastics, muds, and turbidites. Site U1593 lies at the foot of the Kolumbo edifice, 3 km northwest of Site U1590. Owing to poor recovery at the latter site, we decided to also drill at Site U1593, which lies on the other side (northwest) of the Kolumbo Fault from Site U1590. This had two advantages. First, we could measure the offset across the Kolumbo Fault by correlating key marker layers from one site to the other. Second, the sequence at Site U1593 was more condensed than at Site U1590, offering us older recovery and better hole stability. Like Site U1590, Site U1593 allowed us to drill Seismic Units K1–K3 and K5, and therefore nearly the entire history of Kolumbo Volcano, within the proposed drilling target depth of 581 mbsf. Intercalated seismic units were believed to contain the products of Santorini eruptions, including potentially those of smaller magnitude than recorded at the more distal basin sites.more » « less
- 
            Abstract The firn layer covers 98% of Antarctica's ice sheets, protecting underlying glacial ice from the external environment. Accurate measurement of firn properties is essential for assessing cryosphere mass balance and climate change impacts. Characterizing firn structure through core sampling is expensive and logistically challenging. Seismic surveys, which translate seismic velocities into firn densities, offer an efficient alternative. This study employs Distributed Acoustic Sensing technology to transform an existing fiber‐optic cable near the South Pole into a multichannel, low‐maintenance, continuously interrogated seismic array. The data resolve 16 seismic wave propagation modes at frequencies up to 100 Hz that constrain P and S wave velocities as functions of depth. Using co‐located geophones for ambient noise interferometry, we resolve very weak radial anisotropy. Leveraging nearby SPICEcore firn density data, we find prior empirical density‐velocity relationships underestimate firn air content by over 15%. We present a new empirical relationship for the South Pole region.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
