skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 1, 2026

Title: Calibration and simulation of ionization signal and electronics noise in the ICARUS liquid argon time projection chamber
Abstract The ICARUS liquid argon time projection chamber (LArTPC) neutrino detector has been taking physics data since 2022 as part of the Short-Baseline Neutrino (SBN) Program. This paper details the equalization of the response to charge in the ICARUS time projection chamber (TPC), as well as data-driven tuning of the simulation of ionization charge signals and electronics noise. The equalization procedure removes non-uniformities in the ICARUS TPC response to charge in space and time. This work leverages the copious number of cosmic ray muons available to ICARUS at the surface. The ionization signal shape simulation applies a novel procedure that tunes the simulation to match what is measured in data. The end result of the equalization procedure and simulation tuning allows for a comparison of charge measurements in ICARUS between Monte Carlo simulation and data, showing good performance with minimal residual bias between the two.  more » « less
Award ID(s):
2207171
PAR ID:
10600390
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Corporate Creator(s):
Publisher / Repository:
APS
Date Published:
Journal Name:
Journal of Instrumentation
Volume:
20
Issue:
01
ISSN:
1748-0221
Page Range / eLocation ID:
P01032
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The ICARUS-T600 Liquid Argon Time Projection Chamber is operating at Fermilab at shallow depth and thus exposed to a high flux of cosmic rays that can fake neutrino interactions. A cosmic ray tagging (CRT) system (∼ 1100 m2), surrounding the cryostat with two layers of fiber embedded plastic scintillators, was developed to mitigate the cosmic ray induced background. Using nanosecond-level timing information, the CRT can distinguish incoming cosmic rays from outgoing particles from neutrino interactions in the TPC. In this paper an overview of the CRT system, its installation and commissioning at Fermilab, and its performance are discussed. 
    more » « less
  2. Abstract This paper reports on a measurement of electron-ion recombination in liquid argon in the ICARUS liquid argon time projection chamber (LArTPC). A clear dependence of recombination on the angle of the ionizing particle track relative to the drift electric field is observed. An ellipsoid modified box (EMB) model of recombination describes the data across all measured angles. These measurements are used for the calorimetric energy scale calibration of the ICARUS TPC, which is also presented. The impact of the EMB model is studied on calorimetric particle identification, as well as muon and proton energy measurements. Accounting for the angular dependence in EMB recombination improves the accuracy and precision of these measurements. 
    more » « less
  3. Abstract The precision in reconstructing events detected in a dual-phase time projection chamber depends on an homogeneous and well understood electric field within the liquid target. In the XENONnT TPC the field homogeneity is achieved through a double-array field cage, consisting of two nested arrays of field shaping rings connected by an easily accessible resistor chain. Rather than being connected to the gate electrode, the topmost field shaping ring is independently biased, adding a degree of freedom to tune the electric field during operation. Two-dimensional finite element simulations were used to optimize the field cage, as well as its operation. Simulation results were compared to$${}^{83\textrm{m}}\hbox {Kr }$$ 83 m Kr calibration data. This comparison indicates an accumulation of charge on the panels of the TPC which is constant over time, as no evolution of the reconstructed position distribution of events is observed. The simulated electric field was then used to correct the charge signal for the field dependence of the charge yield. This correction resolves the inconsistent measurement of the drift electron lifetime when using different calibrations sources and different field cage tuning voltages. 
    more » « less
  4. A bstract The MicroBooNE liquid argon time projection chamber located at Fermilab is a neutrino experiment dedicated to the study of short-baseline oscillations, the measurements of neutrino cross sections in liquid argon, and to the research and development of this novel detector technology. Accurate and precise measurements of calorimetry are essential to the event reconstruction and are achieved by leveraging the TPC to measure deposited energy per unit length along the particle trajectory, with mm resolution. We describe the non-uniform calorimetric reconstruction performance in the detector, showing dependence on the angle of the particle trajectory. Such non-uniform reconstruction directly affects the performance of the particle identification algorithms which infer particle type from calorimetric measurements. This work presents a new particle identification method which accounts for and effectively addresses such non-uniformity. The newly developed method shows improved performance compared to previous algorithms, illustrated by a 93.7% proton selection efficiency and a 10% muon mis-identification rate, with a fairly loose selection of tracks performed on beam data. The performance is further demonstrated by identifying exclusive final states in ν μ CC interactions. While developed using MicroBooNE data and simulation, this method is easily applicable to future LArTPC experiments, such as SBND, ICARUS, and DUNE. 
    more » « less
  5. Abstract Primary challenges for current and future precision neutrino experiments using liquid argon time projection chambers (LArTPCs) include understanding detector effects and quantifying the associated systematic uncertainties. This paper presents a novel technique for assessing and propagating LArTPC detector-related systematic uncertainties. The technique makes modifications to simulation waveforms based on a parameterization of observed differences in ionization signals from the TPC between data and simulation, while remaining insensitive to the details of the detector model. The modifications are then used to quantify the systematic differences in low- and high-level reconstructed quantities. This approach could be applied to future LArTPC detectors, such as those used in SBN and DUNE. 
    more » « less