skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Design and performance of the field cage for the XENONnT experiment
Abstract The precision in reconstructing events detected in a dual-phase time projection chamber depends on an homogeneous and well understood electric field within the liquid target. In the XENONnT TPC the field homogeneity is achieved through a double-array field cage, consisting of two nested arrays of field shaping rings connected by an easily accessible resistor chain. Rather than being connected to the gate electrode, the topmost field shaping ring is independently biased, adding a degree of freedom to tune the electric field during operation. Two-dimensional finite element simulations were used to optimize the field cage, as well as its operation. Simulation results were compared to$${}^{83\textrm{m}}\hbox {Kr }$$ 83 m Kr calibration data. This comparison indicates an accumulation of charge on the panels of the TPC which is constant over time, as no evolution of the reconstructed position distribution of events is observed. The simulated electric field was then used to correct the charge signal for the field dependence of the charge yield. This correction resolves the inconsistent measurement of the drift electron lifetime when using different calibrations sources and different field cage tuning voltages.  more » « less
Award ID(s):
1719270 2112802 2112796 2112851 2112803 2112801
PAR ID:
10515699
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Corporate Creator(s):
Publisher / Repository:
The European Physical Journal C
Date Published:
Journal Name:
The European Physical Journal C
Volume:
84
Issue:
2
ISSN:
1434-6052
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Noble element time projection chambers are a leading technology for rare event detection in physics, such as for dark matter and neutrinoless double beta decay searches. Time projection chambers typically assign event position in the drift direction using the relative timing of prompt scintillation and delayed charge collection signals, allowing for reconstruction of an absolute position in the drift direction. In this paper, alternate methods for assigning event drift distance via quantification of electron diffusion in a pure high pressure xenon gas time projection chamber are explored. Data from the NEXT-White detector demonstrate the ability to achieve good position assignment accuracy for both high- and low-energy events. Using point-like energy deposits from$$^{83\textrm{m}}$$ 83 m Kr calibration electron captures ($$E\sim 45$$ E 45  keV), the position of origin of low-energy events is determined to 2 cm precision with bias$$< 1~$$ < 1 mm. A convolutional neural network approach is then used to quantify diffusion for longer tracks ($$E\ge ~1.5$$ E 1.5  MeV), from radiogenic electrons, yielding a precision of 3 cm on the event barycenter. The precision achieved with these methods indicates the feasibility energy calibrations of better than 1% FWHM at Q$$_{\beta \beta }$$ β β in pure xenon, as well as the potential for event fiducialization in large future detectors using an alternate method that does not rely on primary scintillation. 
    more » « less
  2. Abstract A search is reported for charge-parity$$CP$$ CP violation in$${{{\textrm{D}}}^{{0}}} \rightarrow {{\textrm{K}} _{\text {S}}^{{0}}} {{\textrm{K}} _{\text {S}}^{{0}}} $$ D 0 K S 0 K S 0 decays, using data collected in proton–proton collisions at$$\sqrt{s} = 13\,\text {Te}\hspace{-.08em}\text {V} $$ s = 13 Te V recorded by the CMS experiment in 2018. The analysis uses a dedicated data set that corresponds to an integrated luminosity of 41.6$$\,\text {fb}^{-1}$$ fb - 1 , which consists of about 10 billion events containing a pair of b hadrons, nearly all of which decay to charm hadrons. The flavor of the neutral D meson is determined by the pion charge in the reconstructed decays$${{{\textrm{D}}}^{{*+}}} \rightarrow {{{\textrm{D}}}^{{0}}} {{{\mathrm{\uppi }}}^{{+}}} $$ D + D 0 π + and$${{{\textrm{D}}}^{{*-}}} \rightarrow {\overline{{\textrm{D}}}^{{0}}} {{{\mathrm{\uppi }}}^{{-}}} $$ D - D ¯ 0 π - . The$$CP$$ CP asymmetry in$${{{\textrm{D}}}^{{0}}} \rightarrow {{\textrm{K}} _{\text {S}}^{{0}}} {{\textrm{K}} _{\text {S}}^{{0}}} $$ D 0 K S 0 K S 0 is measured to be$$A_{CP} ({{\textrm{K}} _{\text {S}}^{{0}}} {{\textrm{K}} _{\text {S}}^{{0}}} ) = (6.2 \pm 3.0 \pm 0.2 \pm 0.8)\%$$ A CP ( K S 0 K S 0 ) = ( 6.2 ± 3.0 ± 0.2 ± 0.8 ) % , where the three uncertainties represent the statistical uncertainty, the systematic uncertainty, and the uncertainty in the measurement of the$$CP$$ CP asymmetry in the$${{{\textrm{D}}}^{{0}}} \rightarrow {{\textrm{K}} _{\text {S}}^{{0}}} {{{\mathrm{\uppi }}}^{{+}}} {{{\mathrm{\uppi }}}^{{-}}} $$ D 0 K S 0 π + π - decay. This is the first$$CP$$ CP asymmetry measurement by CMS in the charm sector as well as the first to utilize a fully hadronic final state. 
    more » « less
  3. Abstract DarkSide-20k is a novel liquid argon dark matter detector currently under construction at the Laboratori Nazionali del Gran Sasso (LNGS) of the Istituto Nazionale di Fisica Nucleare (INFN) that will push the sensitivity for Weakly Interacting Massive Particle (WIMP) detection into the neutrino fog. The core of the apparatus is a dual-phase Time Projection Chamber (TPC), filled with 50 tonnes of low radioactivity underground argon (UAr) acting as the WIMP target. NUV-HD-cryo Silicon Photomultipliers (SiPM)s designed by Fondazione Bruno Kessler (FBK) (Trento, Italy) were selected as the photon sensors covering two$$10.5~\text {m}^2$$ 10.5 m 2 Optical Planes, one at each end of the TPC, and a total of$$5~\text {m}^2$$ 5 m 2 photosensitive surface for the liquid argon veto detectors. This paper describes the Quality Assurance and Quality Control (QA/QC) plan and procedures accompanying the production of FBK NUV-HD-cryo SiPM wafers manufactured by LFoundry s.r.l. (Avezzano, AQ, Italy). SiPM characteristics are measured at 77 K at the wafer level with a custom-designed probe station. As of March 2025, 1314 of the 1400 production wafers (94% of the total) for DarkSide-20k were tested. The wafer yield is$$93.2\pm 2.5$$ 93.2 ± 2.5 %, which exceeds the 80% specification defined in the original DarkSide-20k production plan. 
    more » « less
  4. Abstract We introduce a family of Finsler metrics, called the$$L^p$$ L p -Fisher–Rao metrics$$F_p$$ F p , for$$p\in (1,\infty )$$ p ( 1 , ) , which generalizes the classical Fisher–Rao metric$$F_2$$ F 2 , both on the space of densities$${\text {Dens}}_+(M)$$ Dens + ( M ) and probability densities$${\text {Prob}}(M)$$ Prob ( M ) . We then study their relations to the Amari–C̆encov$$\alpha $$ α -connections$$\nabla ^{(\alpha )}$$ ( α ) from information geometry: on$${\text {Dens}}_+(M)$$ Dens + ( M ) , the geodesic equations of$$F_p$$ F p and$$\nabla ^{(\alpha )}$$ ( α ) coincide, for$$p = 2/(1-\alpha )$$ p = 2 / ( 1 - α ) . Both are pullbacks of canonical constructions on$$L^p(M)$$ L p ( M ) , in which geodesics are simply straight lines. In particular, this gives a new variational interpretation of$$\alpha $$ α -geodesics as being energy minimizing curves. On$${\text {Prob}}(M)$$ Prob ( M ) , the$$F_p$$ F p and$$\nabla ^{(\alpha )}$$ ( α ) geodesics can still be thought as pullbacks of natural operations on the unit sphere in$$L^p(M)$$ L p ( M ) , but in this case they no longer coincide unless$$p=2$$ p = 2 . Using this transformation, we solve the geodesic equation of the$$\alpha $$ α -connection by showing that the geodesic are pullbacks of projections of straight lines onto the unit sphere, and they always cease to exists after finite time when they leave the positive part of the sphere. This unveils the geometric structure of solutions to the generalized Proudman–Johnson equations, and generalizes them to higher dimensions. In addition, we calculate the associate tensors of$$F_p$$ F p , and study their relation to$$\nabla ^{(\alpha )}$$ ( α )
    more » « less
  5. Abstract The elliptic flow$$(v_2)$$ ( v 2 ) of$${\textrm{D}}^{0}$$ D 0 mesons from beauty-hadron decays (non-prompt$${\textrm{D}}^{0})$$ D 0 ) was measured in midcentral (30–50%) Pb–Pb collisions at a centre-of-mass energy per nucleon pair$$\sqrt{s_{\textrm{NN}}} = 5.02$$ s NN = 5.02  TeV with the ALICE detector at the LHC. The$${\textrm{D}}^{0}$$ D 0 mesons were reconstructed at midrapidity$$(|y|<0.8)$$ ( | y | < 0.8 ) from their hadronic decay$$\mathrm {D^0 \rightarrow K^-\uppi ^+}$$ D 0 K - π + , in the transverse momentum interval$$2< p_{\textrm{T}} < 12$$ 2 < p T < 12  GeV/c. The result indicates a positive$$v_2$$ v 2 for non-prompt$${{\textrm{D}}^{0}}$$ D 0 mesons with a significance of 2.7$$\sigma $$ σ . The non-prompt$${{\textrm{D}}^{0}}$$ D 0 -meson$$v_2$$ v 2 is lower than that of prompt non-strange D mesons with 3.2$$\sigma $$ σ significance in$$2< p_\textrm{T} < 8~\textrm{GeV}/c$$ 2 < p T < 8 GeV / c , and compatible with the$$v_2$$ v 2 of beauty-decay electrons. Theoretical calculations of beauty-quark transport in a hydrodynamically expanding medium describe the measurement within uncertainties. 
    more » « less