skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 6, 2026

Title: RA-BNN: Constructing a Robust & Accurate Binary Neural Network Using a Novel Network Growth Mechanism to Defend Against BFA
Adversarial bit-flip attack (BFA), a type of powerful adversarial weight attack demonstrated in real computer systems has shown enormous success in compromising Deep Neural Network (DNN) performance with a minimal amount of model parameter perturbation through rowhammer-based computer main memory bit-flip. For the first time in this work, we demonstrate to defeat adversarial bit-flip attacks by developing a Robust and Accurate Binary Neural Network (RA-BNN) that adopts a complete BNN (i.e., weights and activations are both in binary). Prior works have demonstrated that binary or clustered weights could intrinsically improve a network's robustness against BFA, while in this work, we further reveal that binary activation could improve such robustness even better. However, with both aggressive binary weight and activation representations, the complete BNN suffers from poor clean (i.e., no attack) inference accuracy. To counter this, we propose an efficient two-stage complete BNN growing method for constructing simultaneously robust and accurate BNN, named RA-Growth. It selectively grows the channel size of each BNN layer based on trainable channel-wise binary mask learning with a Gumbel-Sigmoid function. The wider binary network (i.e., RA-BNN) has dual benefits: it can recover clean inference accuracy and significantly higher resistance against BFA. Our evaluation of the CIFAR-10 dataset shows that the proposed RA-BNN can improve the resistance to BFA by up to 100 x. On ImageNet, with a sufficiently large (e.g., 5,000) number of bit-flips, the baseline BNN accuracy drops to 4.3 % from 51.9 %, while our RA-BNN accuracy only drops to 37.1 % from 60.9 %, making it the best defense performance.  more » « less
Award ID(s):
2314591 2505326 2503906 2505209
PAR ID:
10600413
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
IEEE
Date Published:
ISBN:
979-8-3315-0769-5
Page Range / eLocation ID:
00219 to 00228
Format(s):
Medium: X
Location:
Las Vegas, NV, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Recently, a new paradigm of the adversarial attack on the quantized neural network weights has attracted great attention, namely, the Bit-Flip based adversarial weight attack, aka. Bit-Flip Attack (BFA). BFA has shown extraordinary attacking ability, where the adversary can malfunction a quantized Deep Neural Network (DNN) as a random guess, through malicious bit-flips on a small set of vulnerable weight bits (e.g., 13 out of 93 millions bits of 8-bit quantized ResNet-18). However, there are no effective defensive methods to enhance the fault-tolerance capability of DNN against such BFA. In this work, we conduct comprehensive investigations on BFA and propose to leverage binarization-aware training and its relaxation - piece-wise clustering as simple and effective countermeasures to BFA. The experiments show that, for BFA to achieve the identical prediction accuracy degradation (e.g., below 11% on CIFAR-10), it requires 19.3× and 480.1× more effective malicious bit-flips on ResNet-20 and VGG-11 respectively, compared to defend-free counterparts. 
    more » « less
  2. Traditional Deep Neural Network (DNN) security is mostly related to the well-known adversarial input example attack.Recently, another dimension of adversarial attack, namely, attack on DNN weight parameters, has been shown to be very powerful. Asa representative one, the Bit-Flip based adversarial weight Attack (BFA) injects an extremely small amount of faults into weight parameters to hijack the executing DNN function. Prior works of BFA focus on un-targeted attacks that can hack all inputs into a random output class by flipping a very small number of weight bits stored in computer memory. This paper proposes the first work oftargetedBFA based (T-BFA) adversarial weight attack on DNNs, which can intentionally mislead selected inputs to a target output class. The objective is achieved by identifying the weight bits that are highly associated with classification of a targeted output through a class-dependent weight bit searching algorithm. Our proposed T-BFA performance is successfully demonstrated on multiple DNN architectures for image classification tasks. For example, by merely flipping 27 out of 88 million weight bits of ResNet-18, our T-BFA can misclassify all the images from Hen class into Goose class (i.e., 100% attack success rate) in ImageNet dataset, while maintaining 59.35% validation accuracy. 
    more » « less
  3. null (Ed.)
    Deep Neural Network (DNN) trained by the gradient descent method is known to be vulnerable to maliciously perturbed adversarial input, aka. adversarial attack. As one of the countermeasures against adversarial attacks, increasing the model capacity for DNN robustness enhancement was discussed and reported as an effective approach by many recent works. In this work, we show that shrinking the model size through proper weight pruning can even be helpful to improve the DNN robustness under adversarial attack. For obtaining a simultaneously robust and compact DNN model, we propose a multi-objective training method called Robust Sparse Regularization (RSR), through the fusion of various regularization techniques, including channel-wise noise injection, lasso weight penalty, and adversarial training. We conduct extensive experiments to show the effectiveness of RSR against popular white-box (i.e., PGD and FGSM) and black-box attacks. Thanks to RSR, 85 % weight connections of ResNet-18 can be pruned while still achieving 0.68 % and 8.72 % improvement in clean- and perturbed-data accuracy respectively on CIFAR-10 dataset, in comparison to its PGD adversarial training baseline. 
    more » « less
  4. Abstract We present a novel deep neural network (DNN) training scheme and resistive RAM (RRAM) in-memory computing (IMC) hardware evaluation towards achieving high accuracy against RRAM device/array variations and enhanced robustness against adversarial input attacks. We present improved IMC inference accuracy results evaluated on state-of-the-art DNNs including ResNet-18, AlexNet, and VGG with binary, 2-bit, and 4-bit activation/weight precision for the CIFAR-10 dataset. These DNNs are evaluated with measured noise data obtained from three different RRAM-based IMC prototype chips. Across these various DNNs and IMC chip measurements, we show that our proposed hardware noise-aware DNN training consistently improves DNN inference accuracy for actual IMC hardware, up to 8% accuracy improvement for the CIFAR-10 dataset. We also analyze the impact of our proposed noise injection scheme on the adversarial robustness of ResNet-18 DNNs with 1-bit, 2-bit, and 4-bit activation/weight precision. Our results show up to 6% improvement in the robustness to black-box adversarial input attacks. 
    more » « less
  5. Deep Neural Networks (DNNs) need to be both efficient and robust for practical uses. Quantization and structure simplification are promising ways to adapt DNNs to mobile devices, and adversarial training is one of the most successful methods to train robust DNNs. In this work, we aim to realize both advantages by applying a convergent relaxation quantization algorithm, i.e., Binary-Relax (BR), to an adversarially trained robust model, i.e. the ResNets Ensemble via Feynman-Kac Formalism (EnResNet). We discover that high-precision quantization, such as ternary (tnn) or 4-bit, produces sparse DNNs. However, this sparsity is unstructured under adversarial training. To solve the problems that adversarial training jeopardizes DNNs’ accuracy on clean images and break the structure of sparsity, we design a trade-off loss function that helps DNNs preserve natural accuracy and improve channel sparsity. With our newly designed trade-off loss function, we achieve both goals with no reduction of resistance under weak attacks and very minor reduction of resistance under strong adversarial attacks. Together with our model and algorithm selections and loss function design, we provide an integrated approach to produce robust DNNs with high efficiency and accuracy. Furthermore, we provide a missing benchmark on robustness of quantized models. 
    more » « less