As part of the e4usa curriculum, a MATLAB model has been developed and implemented in order to cultivate engineering and computational thinking skills in high school students. The MATLAB model uses a live script that allows students to interact with sliders and dropdown menus to change parameters on a water filtration model. With computational skills increasingly in demand, the literature suggests that adding computational thinking and coding skills as a new form of literacy is crucial for preparing future engineering professionals. Additionally, to ensure that students are better prepared by the time they reach their post-secondary studies, early exposure to computational thinking skills has valuable implications. In this fundamental paper, we describe outcomes resulting from students' interactions with MATLAB in e4usa. The mathematical model allows the students to analyze the effects of different filtration materials, impurities to be removed, length of the water filter, and the space between particles in their filtration material. Using at first a mathematical model rather than testing physical materials will allow them to learn more about their potential filtration materials so that they may make more informed decisions about which filtration materials they want to select for their design and use in the prototype that they build and test. With that said, we focus on student outcomes in this design activity. We hypothesize that this modeling activity prior to design may reduce the time spent in physical testing as well as the volume of materials consumed. Additionally, we are inquisitive about the impact that it has on the subsequent design activities compared to previous semesters where this lesson was taught, where it was observed that students spend a considerable amount of time trying out different materials. As part of our data, we have collected teacher data from surveys, pre and post-responses about their expectations, attitudes, and perceived value of implementing the MATLAB model in their classrooms, class observation data from at least two schools where we noted the interactions between the teachers and students, and teacher and student focus groups at the end of the semester where we expect to collect richer data from these two groups that will allow us to triangulate data collected from surveys and classroom observations.
more »
« less
This content will become publicly available on April 25, 2026
Testing the Effects of an Earthquake on the Structural Integrity of a Building
Students act as civil engineers and use the engineering design process to design and construct a building in an earthquake-prone area for a local developer. Students will have to make decisions on how many materials they use, because they will have a budget to meet. The building materials will include spaghetti noodles, toothpicks, flexible straws, marshmallows, and hot glue. They will also have to construct a building with specific size constraints and that can withstand a 2.5 lb. weight being placed on top of it. After construction, their building with the weight will be placed on a shake table. Students will measure the time their building remains standing during the earthquake. Students will review where their building first collapsed and redesign their building to try to make it last longer in a second earthquake. Finally, each group will use all of their information to develop a presentation of their results for the developer in hopes of winning the bid.
more »
« less
- PAR ID:
- 10600503
- Publisher / Repository:
- Teach Engineering
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
de Vries, E; Hod, Y.; Ahn, J. (Ed.)We report on design-based research to refine a professional development workshop that supports teachers to customize online curricula. We iteratively design representations to make the knowledge integration pedagogy of the curricula visible. We study ways to make the work of students using the curricula actionable for participating teachers. We analyze participants’ trajectories across the three iterations of the workshop. Initially, when participants realized they could customize the online curriculum, they developed feelings of ownership. Then, as participants deepened their understanding of the pedagogy, they began to use it to evaluate their own instruction. The trajectory culminated in participants connecting the pedagogy to student work from their own classroom. This led to a shift from focusing on remedies for misconceptions to seeking opportunities for building on students’ nascent ideas when customizing. The workshop refinements empowered teachers to mobilize the pedagogy to interpret their students' work to inform their customization decisions.more » « less
-
The overwhelming consensus in the scientific community is that anthropogenic climate change will irreversibly affect future generations. Engineering professionals who design and construct our built environment can protect society against the effects of global warming through implementation of building strategies that reduce climate changing emissions. There is little research to assess if students who intend to pursue careers in the design and construction of our built environment hope to address such important environmental and societal challenges. To advance understanding, a survey instrument was developed and validated to measure undergraduate engineering students’ climate change literacy, career motivations, and agency to address climate change in their career. Preliminary results compare responses of engineering students intending to pursue a career in civil and construction industries to those of engineering students intending to pursue other engineering careers. The results indicate that civil and construction engineering students are more likely to take sustainability courses and learn about climate change in the classroom, but they do not excel above other engineers in their knowledge of climate science. The educational gap in engineering sustainability courses must be closed to ensure those who will design and construct our built environment are properly equipped to succeed in the sustainability-related careers they desire.more » « less
-
Abstract Additive manufacturing (AM) can produce designs in a manner that greatly differs from the methods used in the older, more familiar technologies of traditional manufacturing (TM). As an example, AM's layer-by-layer approach to manufacturing designs can lead to the production of intricate geometries and make use of multiple materials, made possible without added manufacturing cost and time due to AM's “free complexity.” Despite this contrasting method for manufacturing designs, designers often forgo the new design considerations for AM (AM design heuristics). Instead, they rely on their familiarity with the design considerations for TM (TM design heuristics) regardless of the intended manufacturing process. For designs that are intended to be manufactured using AM, this usage of TM design considerations is wasteful as it leads to unnecessary material usage, increased manufacturing time, and can result in designs that are poorly manufactured. To remedy this problem, there is a need to intervene early in the design process to help address any concerns regarding the use of AM design heuristics. This work aims to address this opportunity through a preliminary exploration of the design heuristics that students naturally leverage when creating designs in the context of TM and AM. In this study, 117 students in an upper-level engineering design course were given an open-ended design challenge and later tasked with self-evaluating their designs for their manufacturability with TM and AM. This evaluation of the students' designs was later repeated by relevant experts, who would identify the common design heuristics that students are most likely to use in their designs. Future studies will build on these findings by cementing early-stage design support tools that emphasize the significant heuristics found herein. For example, this work found that the design heuristic “incorporating complexity” was the most significant indicator of designs most suited for AM and should therefore be highly encouraged/emphasized when guiding designers in the use of AM. In doing so, it will be possible for early-stage design support tools to maximally improve designs that are intended to be manufactured for AM.more » « less
-
Mass timber products are gaining popularity in North America as an alternative to traditional construction materials as part of both the gravity and lateral force-resisting system. However, several knowledge gaps still exist in terms of their expected seismic performance and plausible hybridizations with other materials, e.g. steel energy dissipators. This research explores the potential use of wall spine systems consisting of mass ply panels (MPP) and steel buckling-restrained braces (BRBs) as energy dissipators. The proposed BRB-MPP spine assembly makes up the lateral force-resisting system of a three-story mass-timber building segment that will be tested under cyclic quasi-static loading at Oregon State University. The proposed design methodology follows displacement-based design principles to determine the minimum required stiffness to limit inelastic story drift ratios at the design earthquake level. The MPP spine and BRB-to-MPP connections were capacity designed to resist forces transferred by the BRBs at roof drift ratios beyond the risk-targeted Maximum Considered Earthquake (MCER). This design solution provides an interesting alternative for the design of modern mass timber buildings. The results obtained in the experimental campaign will be used to validate the design methodology and the behavior of the innovative structural system.more » « less
An official website of the United States government
