skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 9, 2026

Title: The Distribution of Ultrahigh-energy Cosmic Rays along the Supergalactic Plane Measured at the Pierre Auger Observatory
Abstract Ultrahigh-energy cosmic rays are known to be mainly of extragalactic origin, and their propagation is limited by energy losses, so their arrival directions are expected to correlate with the large-scale structure of the local Universe. In this work, we investigate the possible presence of intermediate-scale excesses in the flux of the most energetic cosmic rays from the direction of the supergalactic plane region using events with energies above 20 EeV recorded with the surface detector array of the Pierre Auger Observatory up to 2022 December 31, with a total exposure of 135,000 km2sr yr. The strongest indication for an excess that we find, with a posttrial significance of 3.1σ, is in the Centaurus region, as in our previous reports, and it extends down to lower energies than previously studied. We do not find any strong hints of excesses from any other region of the supergalactic plane at the same angular scale. In particular, our results do not confirm the reports by the Telescope Array Collaboration of excesses from two regions in the Northern Hemisphere at the edge of the field of view of the Pierre Auger Observatory. With a comparable integrated exposure over these regions, our results there are in good agreement with the expectations from an isotropic distribution.  more » « less
Award ID(s):
2412679 2411823 2310111
PAR ID:
10600568
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Corporate Creator(s):
Publisher / Repository:
American Astronomical Society
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
984
Issue:
2
ISSN:
0004-637X
Page Range / eLocation ID:
123
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Diffuse photons of energy above 0.1 PeV, produced through the interactions between cosmic rays and either interstellar matter or background radiation fields, are powerful tracers of the distribution of cosmic rays in the Galaxy. Furthermore, the measurement of a diffuse photon flux would be an important probe to test models of super-heavy dark matter decaying into gamma-rays. In this work, we search for a diffuse photon flux in the energy range between 50 PeV and 200 PeV using data from the Pierre Auger Observatory. For the first time, we combine the air-shower measurements from a 2 km2surface array consisting of 19 water-Cherenkov surface detectors, spaced at 433 m, with the muon measurements from an array of buried scintillators placed in the same area. Using 15 months of data, collected while the array was still under construction, we derive upper limits to the integral photon flux ranging from 13.3 to 13.8 km-2sr-1yr-1above tens of PeV. We extend the Pierre Auger Observatory photon search program towards lower energies, covering more than three decades of cosmic-ray energy. This work lays the foundation for future diffuse photon searches: with the data from the next 10 years of operation of the Observatory, this limit is expected to improve by a factor of ∼20. 
    more » « less
  2. Abstract A promising energy range to look for angular correlations between cosmic rays of extragalactic origin and their sources is at the highest energies, above a few tens of EeV (1 EeV ≡ 10 18 eV). Despite the flux of these particles being extremely low, the area of ∼3000 km 2 covered at the Pierre Auger Observatory, and the 17 yr data-taking period of the Phase 1 of its operations, have enabled us to measure the arrival directions of more than 2600 ultra-high-energy cosmic rays above 32 EeV. We publish this data set, the largest available at such energies from an integrated exposure of 122,000 km 2 sr yr, and search it for anisotropies over the 3.4 π steradians covered with the Observatory. Evidence for a deviation in excess of isotropy at intermediate angular scales, with ∼15° Gaussian spread or ∼25° top-hat radius, is obtained at the 4 σ significance level for cosmic-ray energies above ∼40 EeV. 
    more » « less
  3. Abstract We present a measurement of the cosmic-ray spectrum above 100 PeV using the part of the surface detector of the Pierre Auger Observatory that has a spacing of 750 m. An inflection of the spectrum is observed, confirming the presence of the so-called second-knee feature. The spectrum is then combined with that of the 1500 m array to produce a single measurement of the flux, linking this spectral feature with the three additional breaks at the highest energies. The combined spectrum, with an energy scale set calorimetrically via fluorescence telescopes and using a single detector type, results in the most statistically and systematically precise measurement of spectral breaks yet obtained. These measurements are critical for furthering our understanding of the highest energy cosmic rays. 
    more » « less
  4. De Mitri, I.; Barbato, F.C.T.; Boncioli, D.; Evoli, C.; Pagliaroli, G.; Salamida, F. (Ed.)
    The Telescope Array and the Pierre Auger Observatory estimate the composition of ultra-high-energy cosmic rays by observing the distribution of depths of air-shower maxima, X max . Both experiments directly observe the longitudinal development of air showers using fluorescence telescopes with surface particle detectors used in conjunction to provide precision in determining air-shower geometry. The two experiments differ in the details of the analysis of events, so a direct comparison of X max distributions is not possible. The Auger – Telescope Array Composition Working Group presents their results from a technique to compare X max measurements from Auger with those of Telescope Array. In particular, the compatibility of the first two moments of the X max distributions of Auger with the data from the Black Rock Mesa and Long Ridge detectors of the Telescope Array is tested for energies above 10 18.2 eV. Quantitative comparisons are obtained using air-shower simulations of four representative species made using the Sibyll 2.3d high-energy interaction model. These are weighted to fit the fractional composition seen in Auger data and reconstructed using the Telescope Array detector response and analysis methods. 
    more » « less
  5. Abstract For several decades, the origin of ultra-high-energy cosmic rays (UHECRs) has been an unsolved question of high-energy astrophysics. One approach for solving this puzzle is to correlate UHECRs with high-energy neutrinos, since neutrinos are a direct probe of hadronic interactions of cosmic rays and are not deflected by magnetic fields. In this paper, we present three different approaches for correlating the arrival directions of neutrinos with the arrival directions of UHECRs. The neutrino data are provided by the IceCube Neutrino Observatory and ANTARES, while the UHECR data with energies above ∼50 EeV are provided by the Pierre Auger Observatory and the Telescope Array. All experiments provide increased statistics and improved reconstructions with respect to our previous results reported in 2015. The first analysis uses a high-statistics neutrino sample optimized for point-source searches to search for excesses of neutrino clustering in the vicinity of UHECR directions. The second analysis searches for an excess of UHECRs in the direction of the highest-energy neutrinos. The third analysis searches for an excess of pairs of UHECRs and highest-energy neutrinos on different angular scales. None of the analyses have found a significant excess, and previously reported overfluctuations are reduced in significance. Based on these results, we further constrain the neutrino flux spatially correlated with UHECRs. 
    more » « less