We report an investigation of the mass composition of cosmic rays with energies from 3 to 100 EeV ( ) using the distributions of the depth of shower maximum . The analysis relies on events recorded by the surface detector of the Pierre Auger Observatory and a deep-learning-based reconstruction algorithm. Above energies of 5 EeV, the dataset offers a 10-fold increase in statistics with respect to fluorescence measurements at the Observatory. After cross-calibration using the fluorescence detector, this enables the first measurement of the evolution of the mean and the standard deviation of the distributions up to 100 EeV. Our findings are threefold: (i) The evolution of the mean logarithmic mass toward a heavier composition with increasing energy can be confirmed and is extended to 100 EeV. (ii) The evolution of the fluctuations of toward a heavier and purer composition with increasing energy can be confirmed with high statistics. We report a rather heavy composition and small fluctuations in at the highest energies. (iii) We find indications for a characteristic structure beyond a constant change in the mean logarithmic mass, featuring three breaks that are observed in proximity to the ankle, instep, and suppression features in the energy spectrum. Published by the American Physical Society2025
more »
« less
The energy spectrum of cosmic rays beyond the turn-down around $$\varvec{10^{17}}$$ eV as measured with the surface detector of the Pierre Auger Observatory
Abstract We present a measurement of the cosmic-ray spectrum above 100 PeV using the part of the surface detector of the Pierre Auger Observatory that has a spacing of 750 m. An inflection of the spectrum is observed, confirming the presence of the so-called second-knee feature. The spectrum is then combined with that of the 1500 m array to produce a single measurement of the flux, linking this spectral feature with the three additional breaks at the highest energies. The combined spectrum, with an energy scale set calorimetrically via fluorescence telescopes and using a single detector type, results in the most statistically and systematically precise measurement of spectral breaks yet obtained. These measurements are critical for furthering our understanding of the highest energy cosmic rays.
more »
« less
- PAR ID:
- 10330730
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Date Published:
- Journal Name:
- The European Physical Journal C
- Volume:
- 81
- Issue:
- 11
- ISSN:
- 1434-6044
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Telescope Array (TA) is the largest ultrahigh energy cosmic-ray (UHECR) observatory in the Northern Hemisphere. It explores the origin of UHECRs by measuring their energy spectrum, arrival-direction distribution, and mass composition using a surface detector (SD) array covering approximately 700 km and fluorescence detector (FD) stations. TA has found evidence for a cluster of cosmic rays with energies greater than 57 EeV. In order to confirm this evidence with more data, it is necessary to increase the data collection rate. We have begun building an expansion of TA that we call TAx4. In this paper, we explain the motivation, design, technical features, and expected performance of the TAx4 SD. We also present TAx4’s current status and examples of the data that have already been collected.more » « less
-
We consider the possibility that the cosmic neutrino background might have a nonthermal spectrum, and investigate its effect on cosmological parameters relative to standard $$\Lambda$$-Cold Dark Matter ($$\Lambda$$CDM) cosmology. As a specific model, we consider a thermal $$y$$-distortion, which alters the distribution function of the neutrino background by depleting the population of low-energy neutrinos and enhancing the high-energy tail. We constrain the thermal $$y$$-parameter of the cosmic neutrino background using Cosmic Microwave Background (CMB) and Baryon Acoustic Oscillation (BAO) measurements, and place a $$95\%$$-confidence upper bound of $$y \leq 0.043$$. The $$y$$-parameter increases the number of effective relativistic degrees of freedom, reducing the sound horizon radius and increasing the best-fit value for the Hubble constant $$H_0$$. We obtain an upper bound on the Hubble constant of $$H_0 = 71.12\ \mathrm{km/s/Mpc}$$ at $$95\%$$ confidence, substantially reducing the tension between CMB/BAO constraints and direct measurement of the expansion rate from Type-Ia supernovae. Including a spectral distortion also allows for a higher value of the spectral index of scalar fluctuations, with a best-fit of $$n_{\mathrm{S}} = 0.9720 \pm 0.0063$$, and a $$95\%$$-confidence upper bound of $$n_{\mathrm{S}} \leq 0.9842$$.more » « less
-
Abstract Lorentz invariance violation (LIV) is often described by dispersion relations of the form E i 2 = m i 2 + p i 2 +δ i,n E 2+n with delta different based on particle type i , with energy E , momentum p and rest mass m . Kinematics and energy thresholds of interactions are modified once the LIV terms become comparable to the squared masses of the particles involved. Thus, the strongest constraints on the LIV coefficients δ i,n tend to come from the highest energies. At sufficiently high energies, photons produced by cosmic ray interactions as they propagate through the Universe could be subluminal and unattenuated over cosmological distances. Cosmic ray interactions can also be modified and lead to detectable fingerprints in the energy spectrum and mass composition observed on Earth. The data collected at the Pierre Auger Observatory are therefore possibly sensitive to both the electromagnetic and hadronic sectors of LIV. In this article, we explore these two sectors by comparing the energy spectrum and the composition of cosmic rays and the upper limits on the photon flux from the Pierre Auger Observatory with simulations including LIV. Constraints on LIV parameters depend strongly on the mass composition of cosmic rays at the highest energies. For the electromagnetic sector, while no constraints can be obtained in the absence of protons beyond 10 19 eV, we obtain δ γ,0 > -10 -21 , δ γ,1 > -10 -40 eV -1 and δ γ,2 > -10 -58 eV -2 in the case of a subdominant proton component up to 10 20 eV. For the hadronic sector, we study the best description of the data as a function of LIV coefficients and we derive constraints in the hadronic sector such as δ had,0 < 10 -19 , δ had,1 < 10 -38 eV -1 and δ had,2 < 10 -57 eV -2 at 5σ CL.more » « less
-
Abstract Radio antennas have become a standard tool for the detection of cosmic-ray air showers in the energy range above$$10^{16}\,$$ eV. The radio signal of these air showers is generated mostly due to the deflection of electrons and positrons in the geomagnetic field, and contains information about the energy and the depth of the maximum of the air showers. Unlike the traditional air-Cherenkov and air-fluorescence techniques for the electromagnetic shower component, radio detection is not restricted to clear nights, and recent experiments have demonstrated that the measurement accuracy can compete with these traditional techniques. Numerous particle detector arrays for air showers have thus been or will be complemented by radio antennas. In particular when combined with muon detectors, the complementary information provided by the radio antennas can enhance the total accuracy for the arrival direction, energy and mass of the primary cosmic rays. Digitization and computational techniques have been crucial for this recent progress, and radio detection will play an important role in next-generation experiments for ultrahigh-energy cosmic rays. Moreover, stand-alone radio experiments are under development and will search for ultrahigh-energy photons and neutrinos in addition to cosmic rays. This article provides a brief introduction to the physics of the radio emission of air showers, an overview of air-shower observatories using radio antennas, and highlights some of their recent results.more » « less