skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Triggering Intensity Changes Over Time and Space as Measured by Continuous Waveforms in Southern California
Abstract Dynamic triggering of earthquakes is when seismic waves from earthquakes induce seismic activity at a distance. The observability of the seismic wave stresses and their results presents a unique opportunity to understand earthquake interactions and associated hazard implications. The extent and timing of dynamic triggering at given specific stress changes still remain inadequately predicted due to limited studies and data sets. In particular, the requirement for complete, well‐characterized catalogs to detect triggering systematically seriously limits the types of studies possible. To address this, we utilized 7‐year continuous waveform data from 239 stations in southern California and used PhaseNet for phase picking to identify local earthquakes and measure triggering without constructing any earthquake catalog. We map the triggering intensity over the region and find that overall, the Mojave segment of the San Andreas is the most easily triggered region. However, the spatial pattern changes after the Ridgecrest earthquake and the area appears to become much less prone to triggering, likely due to an exhaustion of the faults near failure in the immediate aftermath of the Ridgecrest sequence. We further observe a slow decay rate of dynamic triggering and conclude that low‐frequency waves (0.04–0.1 Hz) may be more effective in dynamic triggering than high‐frequency waves (1–3 Hz) which is consistent with a rate‐state assisted aseismic creep or hydrological triggering mechanism.  more » « less
Award ID(s):
2031457
PAR ID:
10600682
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Solid Earth
Volume:
130
Issue:
6
ISSN:
2169-9313
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Earthquakes can be dynamically triggered by the passing waves of other distant events. The frequent occurrence of dynamic triggering offers tangible hope in revealing earthquake nucleation processes. However, the physical mechanisms behind earthquake dynamic triggering have remained unclear, and contributions of competing hypotheses are challenging to isolate with individual case studies. To gain a systematic understanding of the spatiotemporal patterns of dynamic triggering, we investigate the phenomenon in southern California from 2008 to 2017. We use the Quake Template Matching catalog and an approach that does not assume an earthquake occurrence distribution. We develop a new set of statistics to examine the significance of seismicity‐rate changes as well as moment‐release changes. Our results show that up to 70% of 1,388 globalM ≥ 6 events may have triggered earthquakes in southern California. The triggered seismicity often occurred several hours after the passing seismic waves. The Salton Sea Geothermal Field, San Jacinto fault, and Coso Geothermal Field are particularly prone to triggering. Although adjacent fault segments can be triggered by the same earthquakes, the majority of triggered earthquakes seem to be uncorrelated, suggesting that the process is primarily governed by local conditions. Further, the occurrence of dynamic triggering does not seem to correlate with ground motion (e.g., peak ground velocity) at the triggered sites. These observations indicate that nonlinear processes may have primarily regulated the dynamic triggering cases. 
    more » « less
  2. Abstract Dynamic triggering of earthquakes has been reported at various fault systems. The triggered earthquakes are thought to be caused either directly by dynamic stress changes due to the passing seismic waves, or indirectly by other nonlinear processes that are initiated by the passing waves. Distinguishing these physical mechanisms is difficult because of the general lack of high‐resolution earthquake catalogs and robust means to quantitatively evaluate triggering responses, particularly, delayed responses. Here we use the high‐resolution Quake Template Matching catalog in Southern California to systematically evaluate teleseismic dynamic triggering patterns in the San Jacinto Fault Zone and the Salton Sea Geothermal Field from 2008 to 2017. We develop a new statistical approach to identify triggered cases, finding that approximately 1 out of every 5 globalMw ≥ 6 earthquakes dynamically trigger microearthquakes in Southern California. The triggering responses include both instantaneous and delayed triggering, showing a highly heterogeneous pattern and indicating possible evolving triggering thresholds. We do not observe a clear peak ground velocity triggering threshold that can differentiate triggering earthquakes from nontriggering events, but there are subtle differences in the frequency content of the ground motion that may differentiate the earthquakes. In contrast to the depth distribution of background seismicity, the identified triggered earthquakes tend to concentrate at the edges of the seismogenic zones. Although instantaneously triggered earthquakes are likely a result of dynamic Coulomb stress changes, the cases of delayed‐dynamic triggering are best explained by nonlinear triggering processes, including cyclic material fatigue, accelerated transient creep, and stochastic frictional heterogeneities. 
    more » « less
  3. The 2019 Ridgecrest, CA earthquake sequence has provided a unique opportunity and a rich dataset to understand earthquake source properties and near-fault structure. Using the high-quality seismic data provided by the SCEC Stress Drop Validation group, we first estimate the corner frequency of M2.0-4.5 earthquakes by applying the spectral ratio method based on empirical Green’s function (Liu et al., 2020). We relate corner frequency estimates to stress drops assuming the Brune source model and circular cracks. Our preliminary results show increasing median stress drops with magnitude for both P and S waves, from 1 MPa for M2.0 events to 10 MPa for M4.0 events, though the limited frequency bandwidth may cause underestimation for small events. The estimated moment magnitude is proportional to the catalog magnitude by a factor of 0.72, which is close to 0.74 estimated by Trugman (2020) for the Ridgecrest earthquake sequence. In the second part of the study, we examine the impact of fault zone structure on the azimuthal variation of the source spectra. Using kinematic simulations and observations of the 2003 Big Bear earthquake sequence, Huang et al. (2016) showed that fault damage zones can act as an effective wave guide and cause high-frequency wave amplification along directions close to fault strike. We use clusters of M1.5-3 earthquakes in the Ridgecrest region to further examine the azimuthal variation of the stacked source spectra and investigate if the near-source structure can affect our corner frequency estimates. We aim to develop robust methods that utilize high-quality seismic data to illuminate earthquake source processes and fault zone properties. 
    more » « less
  4. null (Ed.)
    Abstract Cook Inlet fore‐arc basin in south‐central Alaska is a large, deep (7.6 km) sedimentary basin with the Anchorage metropolitan region on its margins. From 2015 to 2017, a set of 28 broadband seismic stations was deployed in the region as part of the Southern Alaska Lithosphere and Mantle Observation Network (SALMON) project. The SALMON stations, which also cover the remote western portion of Cook Inlet basin and the back‐arc region, form the basis for our observational study of the seismic response of Cook Inlet basin. We quantify the influence of Cook Inlet basin on the seismic wavefield using three data sets: (1) ambient‐noise amplitudes of 18 basin stations relative to a nonbasin reference station, (2) earthquake ground‐motion metrics for 34 crustal and intraslab earthquakes, and (3) spectral ratios (SRs) between basin stations and nonbasin stations for the same earthquakes. For all analyses, we examine how quantities vary with the frequency content of the seismic signal and with the basin depth at each station. Seismic waves from earthquakes and from ambient noise are amplified within Cook Inlet basin. At low frequencies (0.1–0.5 Hz), ambient‐noise ratios and earthquake SRs are in a general agreement with power amplification of 6–14 dB, corresponding to amplitude amplification factors of 2.0–5.0. At high frequencies (0.5–4.0 Hz), the basin amplifies the earthquake wavefield by similar factors. Our results indicate stronger amplification for the deeper basin stations such as near Nikiski on the Kenai Peninsula and weaker amplification near the margins of the basin. Future work devoted to 3D wavefield simulations and treatment of source and propagation effects should improve the characterization of the frequency‐dependent response of Cook Inlet basin to recorded and scenario earthquakes in the region. 
    more » « less
  5. null (Ed.)
    Abstract Seismic waves carrying tiny perturbing stresses can trigger earthquakes in geothermal and volcanic regions. The underlying cause of this dynamic triggering is still not well understood. One leading hypothesis is that a sudden increase in the fluid-pore pressure in the fault zone is involved, but the exact physical mechanism is unclear. Here, we report experimental evidence in which a fluid-filled fracture was shown to be able to amplify the pressure of an incoming seismic wave. We built miniature pressure sensors and directly placed them inside a thin fluid-filled fracture to measure the fluid pressure during wave propagation. By varying the fracture aperture from 0.2 to 9.2 mm and sweeping the frequency from 12 to 70 Hz, we observed in the lab that the fluid pressure in the fracture could be amplified up to 25.2 times compared with the incident-wave amplitude. Because an increase of the fluid pressure in a fault can reduce the effective normal stress to allow the fault to slide, our observed transient pressure surge phenomenon may provide the mechanism for earthquake dynamic triggering. 
    more » « less