skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 17, 2026

Title: ROSERAG: Robust Retrieval-augmented Generation with Small-scale LLMs via Margin-aware Preference Optimization
Large language models (LLMs) have achieved impressive performance but face high computational costs and latency, limiting their deployment in resource-constrained settings. In contrast, small-scale LLMs (SLMs) are more efficient yet struggle to capture evolving real-world knowledge. Retrieval-augmented generation (RAG) helps by integrating external knowledge, but imperfect retrieval can introduce distracting noise that misleads SLMs. We propose {\name}, a robust RAG framework for SLMs via Margin-aware Preference Optimization. {\name} employs multi-turn prompting for detailed reasoning, rejection sampling for high-quality explanations, and contrastive preference selection to refine responses by maximizing the likelihood gap between preferred and non-preferred outputs.  more » « less
Award ID(s):
2340241
PAR ID:
10600833
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
ACL Findings
Date Published:
Journal Name:
Proceedings of Machine Learning Research
ISSN:
0736-587X
ISBN:
9798331301491
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Zhai, X; Latif, E; Liu, N; Biswas, G; Yin, Y (Ed.)
    Collaborative dialogue offers rich insights into students’ learning and critical thinking, which is essential for personalizing pedagogical agent interactions in STEM+C settings. While large language models (LLMs) facilitate dynamic pedagogical interactions, hallucinations undermine confidence, trust, and instructional value. Retrieval-augmented generation (RAG) grounds LLM outputs in curated knowledge, but requires a clear semantic link between user input and a knowledge base, which is often weak in student dialogue. We propose log-contextualized RAG (LC-RAG), which enhances RAG retrieval by using the environment logs to contextualize collaborative discourse. Our findings show that LCRAG improves retrieval over a discourse-only baseline and allows our collaborative peer agent, Copa, to deliver relevant, personalized guidance that supports students’ critical thinking and epistemic decision-making in a collaborative computational modeling environment, C2STEM. 
    more » « less
  2. An evolving solution to address hallucination and enhance accuracy in large language models (LLMs) is Retrieval-Augmented Generation (RAG), which involves augmenting LLMs with information retrieved from an external knowledge source, such as the web. This paper profiles several RAG execution pipelines and demystifies the complex interplay between their retrieval and generation phases. We demonstrate that while exact retrieval schemes are expensive, they can reduce inference time compared to approximate retrieval variants because an exact retrieval model can send a smaller but more accurate list of documents to the generative model while maintaining the same end-to-end accuracy. This observation motivates the acceleration of the exact nearest neighbor search for RAG. In this work, we design Intelligent Knowledge Store (IKS), a type-2 CXL device that implements a scale-out near-memory acceleration architecture with a novel cache-coherent interface between the host CPU and near-memory accelerators. IKS offers 13.4--27.9× faster exact nearest neighbor search over a 512GB vector database compared with executing the search on Intel Sapphire Rapids CPUs. This higher search performance translates to 1.7--26.3× lower end-to-end inference time for representative RAG applications. IKS is inherently a memory expander; its internal DRAM can be disaggregated and used for other applications running on the server to prevent DRAM -- which is the most expensive component in today's servers -- from being stranded. 
    more » « less
  3. As IoT device adoption grows, ensuring cybersecurity compliance with IoT standards, like National Institute of Standards and Technology Interagency (NISTIR) 8259A, has become increasingly complex. These standards are typically presented in lengthy, text-based formats that are difficult to process and query automatically. We built a knowledge graph to address this challenge to represent the key concepts, relationships, and references within NISTIR 8259A. We further integrate this knowledge graph with Retrieval-Augmented Generation (RAG) techniques that can be used by large language models (LLMs) to enhance the accuracy and contextual relevance of information retrieval. Additionally, we evaluate the performance of RAG using both graph-based queries and vector database embeddings. Our framework, implemented in Neo4j, was tested using multiple LLMs, including LLAMA2, Mistral-7B, and GPT-4. Our findings show that combining knowledge graphs with RAG significantly improves query precision and contextual relevance compared to unstructured vector-based retrieval methods. While traditional rule-based compliance tools were not evaluated in this study, our results demonstrate the advantages of structured, graph driven querying for security standards like NISTIR 8259A. 
    more » « less
  4. Retrieval-augmented generation (RAG) enhances large language models (LLMs) by incorporating external data sources beyond their training sets and querying predefined knowledge bases to generate accurate, context-rich responses. Most RAG implementations use vector similarity searches, but the effectiveness of this approach and the representation of knowledge bases remain underexplored. Emerging research suggests knowledge graphs as a promising solution. Therefore, this paper presents StructuGraphRAG, which leverages document structures to inform the extraction process and constructs knowledge graphs to enhance RAG for social science research, specifically using NSDUH datasets. Our method parses document structures to extract entities and relationships, constructing comprehensive and relevant knowledge graphs. Experimental results show that StructuGraphRAG outperforms traditional RAG methods in accuracy, comprehensiveness, and contextual relevance. This approach provides a robust tool for social science researchers, facilitating precise analysis of social determinants of health and justice, and underscores the potential of structured document-informed knowledge graph construction in AI and social science research. 
    more » « less
  5. Mills, Caitlin; Alexandron, Giora; Taibi, Davide; Lo_Bosco, Giosuè; Paquette, Luc (Ed.)
    Short answer assessment is a vital component of science education, allowing evaluation of students' complex three-dimensional understanding. Large language models (LLMs) that possess human-like ability in linguistic tasks are increasingly popular in assisting human graders to reduce their workload. However, LLMs' limitations in domain knowledge restrict their understanding in task-specific requirements and hinder their ability to achieve satisfactory performance. Retrieval-augmented generation (RAG) emerges as a promising solution by enabling LLMs to access relevant domain-specific knowledge during assessment. In this work, we propose an adaptive RAG framework for automated grading that dynamically retrieves and incorporates domain-specific knowledge based on the question and student answer context. Our approach combines semantic search and curated educational sources to retrieve valuable reference materials. Experimental results in a science education dataset demonstrate that our system achieves an improvement in grading accuracy compared to baseline LLM approaches. The findings suggest that RAG-enhanced grading systems can serve as reliable support with efficient performance gains. 
    more » « less