We present the computational methodology, which for the first time allows rigorous twelve-dimensional (12D) quantum calculations of the coupled intramolecular and intermolecular vibrational states of hydrogen-bonded trimers of flexible diatomic molecules. Its starting point is the approach that we introduced recently for fully coupled 9D quantum calculations of the intermolecular vibrational states of noncovalently bound trimers comprised of diatomics treated as rigid. In this paper, it is extended to include the intramolecular stretching coordinates of the three diatomic monomers. The cornerstone of our 12D methodology is the partitioning of the full vibrational Hamiltonian of the trimer into two reduced-dimension Hamiltonians, one in 9D for the intermolecular degrees of freedom (DOFs) and another in 3D for the intramolecular vibrations of the trimer, and a remainder term. These two Hamiltonians are diagonalized separately, and a fraction of their respective 9D and 3D eigenstates is included in the 12D product contracted basis for both the intra- and intermolecular DOFs, in which the matrix of the full 12D vibrational Hamiltonian of the trimer is diagonalized. This methodology is implemented in the 12D quantum calculations of the coupled intra- and intermolecular vibrational states of the hydrogen-bonded HF trimer on an ab initio calculated potential energy surface (PES). The calculations encompass the one- and two-quanta intramolecular HF-stretch excited vibrational states of the trimer and low-energy intermolecular vibrational states in the intramolecular vibrational manifolds of interest. They reveal several interesting manifestations of significant coupling between the intra- and intermolecular vibrational modes of (HF)3. The 12D calculations also show that the frequencies of the v = 1, 2 HF stretching states of the HF trimer are strongly redshifted in comparison to those of the isolated HF monomer. Moreover, the magnitudes of these trimer redshifts are much larger than that of the redshift for the stretching fundamental of the donor-HF moiety in (HF)2, most likely due to the cooperative hydrogen bonding in (HF)3. The agreement between the 12D results and the limited spectroscopic data for the HF trimer, while satisfactory, leaves room for improvement and points to the need for a more accurate PES.
more »
« less
This content will become publicly available on January 21, 2026
H2O trimer: Rigorous 12D quantum calculations of intermolecular vibrational states, tunneling splittings, and low-frequency spectrum
The water trimer, as the smallest water cluster in which the three-body interactions can manifest, is arguably the most important hydrogen-bonded trimer. Accurate, fully coupled quantum treatment of its excited intermolecular vibrations has long been an elusive goal. Here, we present the methodology that for the first time allows rigorous twelve-dimensional (12D) quantum calculation of the intermolecular vibration-tunneling eigenstates of the water trimer, with the monomers treated as rigid. These 12D eigenstates are used to simulate the low-frequency absorption spectrum of the trimer for direct comparison with the measured far-infrared (FIR) spectrum of the water trimer in helium nanodroplets. The 12D calculations reveal weak coupling between the large-amplitude torsional and intermolecular stretching vibrations. The calculated torsional tunneling splittings are in excellent agreement with spectroscopic results. There are visible differences between the spectrum simulated using the 12D eigenstates and that based on our earlier 9D calculations where the stretching vibrations are not included. The peaks in the 12D spectrum are generally shifted to slightly lower energies relative to those in the 9D spectrum, as well as the measured FIR spectrum, and are often split by intermolecular stretch–bend Fermi resonances that the 9D treatment cannot capture.
more »
« less
- Award ID(s):
- 2054616
- PAR ID:
- 10600874
- Publisher / Repository:
- AIP
- Date Published:
- Journal Name:
- The Journal of Chemical Physics
- Volume:
- 162
- Issue:
- 3
- ISSN:
- 0021-9606
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We present the computational methodology that allows rigorous and efficient nine-dimensional (9D) quantum calculations of the intermolecular vibrational states of noncovalently bound trimers of diatomic molecules, with the monomers treated as rigid. The full 9D vibrational Hamiltonian of the trimer is partitioned into a 3D “frame” (or stretching) Hamiltonian and a 6D “bend” Hamiltonian. These two Hamiltonians are diagonalized separately, and a certain number of their lowest-energy eigenstates is included in the final 9D product contracted basis in which the full 9D intermolecular vibrational Hamiltonian is diagonalized. This methodology is applied to the 9D calculations of the intermolecular vibrational levels of (HF)3, a prototypical hydrogen-bonded trimer, on the rigid-monomer version of an ab initio calculated potential energy surface (PES). They are the first to include fully the stretch-bend coupling present in the trimer. The frequencies of all bending fundamentals considered from the present 9D calculations are about 10% lower than those from the earlier quantum 6D calculations that considered only the bending modes of the HF trimer. This means that the stretch-bend coupling is strong, and it is imperative to include it in any accurate treatment of the (HF)3 vibrations aiming to assess the accuracy of the PES employed. Moreover, the 9D results are in better agreement with the limited available spectroscopic data that those from the 6D calculations. In addition, the 9D results show sensitivity to the value of the HF bond length, equilibrium or vibrationally averaged, used in the calculations. The implication is that full-dimensional 12D quantum calculations will be required to obtain definitive vibrational excitation energies for a given PES. Our study also demonstrates that the nonadditive three-body interactions are very significant in (HF)3 and have to be included in order to obtain accurate intermolecular vibrational energy levels of the trimer.more » « less
-
We present fully coupled, full-dimensional quantum calculations of the inter- and intra-molecular vibrational states of HCl trimer, a paradigmatic hydrogen-bonded molecular trimer. They are performed utilizing the recently developed methodology for the rigorous 12D quantum treatment of the vibrations of the noncovalently bound trimers of flexible diatomic molecules [Felker and Bačić, J. Chem. Phys. 158, 234109 (2023)], which was previously applied to the HF trimer by us. In this work, the many-body 12D potential energy surface (PES) of (HCl)3 [Mancini and Bowman, J. Phys. Chem. A 118, 7367 (2014)] is employed. The calculations extend to the intramolecular HCl-stretch excited vibrational states of the trimer with one- and two-quanta, together with the low-energy intermolecular vibrational states in the two excited v = 1 intramolecular vibrational manifolds. They reveal significant coupling between the intra- and inter-molecular vibrational modes. The 12D calculations also show that the frequencies of the v = 1 HCl stretching states of the HCl trimer are significantly redshifted relative to those of the isolated HCl monomer. Detailed comparison is made between the results of the 12D calculations on the two-body PES, obtained by removing the three-body term from the original 2 + 3-body PES, and those computed on the 2 + 3-body PES. It demonstrates that the three-body interactions have a strong effect on the trimer binding energy as well as on its intra- and inter-molecular vibrational energy levels. Comparison with the available spectroscopic data shows that good agreement with the experiment is achieved only if the three-body interactions are included. Some low-energy vibrational states localized in a secondary minimum of the PES are characterized as well.more » « less
-
Abstract Hydrogen bonding is a central concept in chemistry and biochemistry, and so it continues to attract intense study. Here, we examine hydrogen bonding in the H2S dimer, in comparison with the well-studied water dimer, in unprecedented detail. We record a mass-selected IR spectrum of the H2S dimer in superfluid helium nanodroplets. We are able to resolve a rotational substructure in each of the three distinct bands and, based on it, assign these to vibration-rotation-tunneling transitions of a single intramolecular vibration. With the use of high-level potential and dipole-moment surfaces we compute the vibration-rotation-tunneling dynamics and far-infrared spectrum with rigorous quantum methods. Intramolecular mode Vibrational Self-Consistent-Field and Configuration-Interaction calculations provide the frequencies and intensities of the four SH-stretch modes, with a focus on the most intense, the donor bound SH mode which yields the experimentally observed bands. We show that the intermolecular modes in the H2S dimer are substantially more delocalized and more strongly mixed than in the water dimer. The less directional nature of the hydrogen bonding can be quantified in terms of weaker electrostatic and more important dispersion interactions. The present study reconciles all previous spectroscopic data, and serves as a sensitive test for the potential and dipole-moment surfaces.more » « less
-
We investigate electron tunneling between quantum dots and molecules to propose a quantum sensor. This sensor consists of double quantum dots (DQD) with energy levels specifically tailored to mirror those of the target analyte. By analyzing the spectral distribution of electron localizations in the DQD system, we can delineate the analyte’s spectrum and deduce its composition by comparing it with a reference sample. To understand electron tunneling dynamics within the DQD/analyte complex, we performed three-dimensional computational modeling applying the effective potential approach to the InAs/GaAs heterostructure. In this modeling, we mimicked the analyte spectrum by utilizing a quantum well characterized by a quasi-discrete spectrum. Our calculations reveal the inherent potential of utilizing this method as a highly sensitive and selective sensor.more » « less
An official website of the United States government
