skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Title: Sequence Braiding: Visual Overviews of Temporal Event Sequences and Attributes
Temporal event sequence alignment has been used in many domains to visualize nuanced changes and interactions over time. Existing approaches align one or two sentinel events. Overview tasks require examining all alignments of interest using interaction and time or juxtaposition of many visualizations. Furthermore, any event attribute overviews are not closely tied to sequence visualizations. We present SEQUENCE BRAIDING, a novel overview visualization for temporal event sequences and attributes using a layered directed acyclic network. SEQUENCE BRAIDING visually aligns many temporal events and attribute groups simultaneously and supports arbitrary ordering, absence, and duplication of events. In a controlled experiment we compare SEQUENCE BRAIDING and IDMVis on user task completion time, correctness, error, and confidence. Our results provide good evidence that users of SEQUENCE BRAIDING can understand high-level patterns and trends faster and with similar error. A full version of this paper with all appendices; the evaluation stimuli, data, and analysis code; and source code are available at osf.io/mq2wt.  more » « less
Award ID(s):
1755901
PAR ID:
10200661
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
IEEE Transactions on Visualization and Computer Graphics
ISSN:
1077-2626
Page Range / eLocation ID:
1 to 1
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Composite temporal event sequence visualizations have included sentinel event alignment techniques to cope with data volume and variety. Prior work has demonstrated the utility of using single-event alignment for understanding the precursor, co-occurring, and aftereffect events surrounding a sentinel event. However, the usefulness of single-event alignment has not been sufficiently evaluated in composite visualizations. Furthermore, recently proposed dual-event alignment techniques have not been empirically evaluated. In this work, we designed tasks around temporal event sequence and timing analysis and conducted a controlled experiment on Amazon Mechanical Turk to examine four sentinel event alignment approaches: no sentinel event alignment (NoAlign), single-event alignment (SingleAlign), dual-event alignment with left justification (DualLeft), and dual-event alignment with stretch justification (DualStretch). Differences between approaches were most pronounced with more rows of data. For understanding intermediate events between two sentinel events, dual-event alignment was the clear winner for correctness-71% vs. 18% for NoAlign and SingleAlign. For understanding the duration between two sentinel events, NoAlign was the clear winner: correctness-88% vs. 36% for DualStretch- completion time-55 seconds vs. 101 seconds for DualLeft-and error-1.5% vs. 8.4% for DualStretch. For understanding precursor and aftereffect events, there was no significant difference among approaches. A free copy of this paper, the evaluation stimuli and data, and source code are available at osf.io/78fs5 
    more » « less
  2. The Digital Library Research Laboratory (DLRL) has collected over 3.5 billion tweets on different events for the Coordinated, Behaviorally-Aware Recovery for Transportation and Power Disruptions (CBAR-tpd), the Integrated Digital Event Archiving and Library (IDEAL), and the Global Event Trend Archive Research (GETAR) projects. The tweet collection topics include heart attack, solar eclipse, terrorism, etc. There are several collections on naturally occurring events such as hurricanes, floods, and solar eclipses. Such naturally occurring events are distributed across space and time. It would be beneficial to researchers if we can perform a spatial-temporal analysis to test some hypotheses, and to find any trends that tweets would reveal for such events. I apply an existing algorithm to detect locations from tweets by modifying it to work better with the type of datasets I work with. I use the time captured in tweets and also identify the tense of the sentences in tweets to perform the temporal analysis. I build a rule-based model for obtaining the tense of a tweet. The results from these two algorithms are merged to analyze naturally occurring moving events such as solar eclipses and hurricanes. Using the spatial-temporal information from tweets, I study if tweets can be a relevant source of information in understanding the movement of the event. I create visualizations to compare the actual path of the event with the information extracted by my algorithms. After examining the results from the analysis, I noted that Twitter can be a reliable source to identify places affected by moving events almost immediately. The locations obtained are at a more detailed level than in news-wires. We can also identify the time that an event affected a particular region by date. 
    more » « less
  3. Abstract Indistinguishability of particles is a fundamental principle of quantum mechanics 1 . For all elementary and quasiparticles observed to date—including fermions, bosons and Abelian anyons—this principle guarantees that the braiding of identical particles leaves the system unchanged 2,3 . However, in two spatial dimensions, an intriguing possibility exists: braiding of non-Abelian anyons causes rotations in a space of topologically degenerate wavefunctions 4–8 . Hence, it can change the observables of the system without violating the principle of indistinguishability. Despite the well-developed mathematical description of non-Abelian anyons and numerous theoretical proposals 9–22 , the experimental observation of their exchange statistics has remained elusive for decades. Controllable many-body quantum states generated on quantum processors offer another path for exploring these fundamental phenomena. Whereas efforts on conventional solid-state platforms typically involve Hamiltonian dynamics of quasiparticles, superconducting quantum processors allow for directly manipulating the many-body wavefunction by means of unitary gates. Building on predictions that stabilizer codes can host projective non-Abelian Ising anyons 9,10 , we implement a generalized stabilizer code and unitary protocol 23 to create and braid them. This allows us to experimentally verify the fusion rules of the anyons and braid them to realize their statistics. We then study the prospect of using the anyons for quantum computation and use braiding to create an entangled state of anyons encoding three logical qubits. Our work provides new insights about non-Abelian braiding and, through the future inclusion of error correction to achieve topological protection, could open a path towards fault-tolerant quantum computing. 
    more » « less
  4. As a decisive part in the success of Mobility-as-a-Service (MaaS), spatio-temporal predictive modeling for crowd movements is a challenging task particularly considering scenarios where societal events drive mobility behavior deviated from the normality. While tremendous progress has been made to model high-level spatio-temporal regularities with deep learning, most, if not all of the existing methods are neither aware of the dynamic interactions among multiple transport modes nor adaptive to unprecedented volatility brought by potential societal events. In this paper, we are therefore motivated to improve the canonical spatio-temporal network (ST-Net) from two perspectives: (1) design a heterogeneous mobility information network (HMIN) to explicitly represent intermodality in multimodal mobility; (2) propose a memory-augmented dynamic filter generator (MDFG) to generate sequence-specific parameters in an on-the-fly fashion for various scenarios. The enhanced event-aware spatio-temporal network, namely EAST-Net, is evaluated on several real-world datasets with a wide variety and coverage of societal events. Both quantitative and qualitative experimental results verify the superiority of our approach compared with the state-of-the-art baselines. Code and data are published on https://github.com/underdoc-wang/EAST-Net. 
    more » « less
  5. Spiking neural networks (SNNs) are well suited for spatio-temporal learning and implementations on energy-efficient event-driven neuromorphic processors. However, existing SNN error backpropagation (BP) methods lack proper handling of spiking discontinuities and suffer from low performance compared with the BP methods for traditional artificial neural networks. In addition, a large number of time steps are typically required to achieve decent performance, leading to high latency and rendering spike based computation unscalable to deep architectures. We present a novel Temporal Spike Sequence Learning Backpropagation (TSSL-BP) method for training deep SNNs, which breaks down error backpropagation across two types of inter-neuron and intra-neuron dependencies and leads to improved temporal learning precision. It captures inter-neuron dependencies through presynaptic firing times by considering the all-or-none characteristics of firing activities, and captures intra-neuron dependencies by handling the internal evolution of each neuronal state in time. TSSL-BP efficiently trains deep SNNs within a much shortened temporal window of a few steps while improving the accuracy for various image classification datasets including CIFAR10. 
    more » « less