Abstract Eating less meat is associated with a healthier body and planet. Yet, we remain reluctant to switch to a plant-based diet, largely due to the sensory experience of plant-based meat. Food scientists characterize meat using a double compression test, which only probes one-dimensional behavior. Here we use tension, compression, and shear tests–combined with constitutive neural networks–to automatically discover the behavior of eight plant-based and animal meats across the entire three-dimensional spectrum. We find that plant-based sausage and hotdog, with stiffnesses of 95.9 ± 14.1 kPa and 38.7 ± 3.0 kPa, successfully mimic their animal counterparts, with 63.5 ± 45.7 kPa and 44.3 ± 13.2 kPa, while tofurky is twice as stiff, and tofu is twice as soft. Strikingly, a complementary food tasting survey produces in nearly identical stiffness rankings for all eight products (ρ= 0.833,p = 0.015). Probing the fully three-dimensional signature of meats is critical to understand subtle differences in texture that may result in a different perception of taste. Our data and code are freely available athttps://github.com/LivingMatterLab/CANN
more »
« less
This content will become publicly available on November 1, 2025
Mimicking Mechanics: A Comparison of Meat and Meat Analogs
The texture of meat is one of the most important features to mimic when developing meat analogs. Both protein source and processing method impact the texture of the final product. We can distinguish three types of mechanical tests to quantify the textural differences between meat and meat analogs: puncture type, rheological torsion tests, and classical mechanical tests of tension, compression, and bending. Here, we compile the shear force and stiffness values of whole and comminuted meats and meat analogs from the two most popular tests for meat, the Warner–Bratzler shear test and the double-compression texture profile analysis. Our results suggest that, with the right fine-tuning, today’s meat analogs are well capable of mimicking the mechanics of real meat. While Warner–Bratzler shear tests and texture profile analysis provide valuable information about the tenderness and sensory perception of meat, both tests suffer from a lack of standardization, which limits cross-study comparisons. Here, we provide guidelines to standardize meat testing and report meat stiffness as the single most informative mechanical parameter. Collecting big standardized data and sharing them with the community at large could empower researchers to harness the power of generative artificial intelligence to inform the systematic development of meat analogs with desired mechanical properties and functions, taste, and sensory perception.
more »
« less
- Award ID(s):
- 2320933
- PAR ID:
- 10600992
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Foods
- Volume:
- 13
- Issue:
- 21
- ISSN:
- 2304-8158
- Page Range / eLocation ID:
- 3495
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
There is increasing consumer demand for alternative animal protein products that are delicious and sustainably produced to address concerns about the impacts of mass-produced meat on human and planetary health. Cultured meat has the potential to provide a source of nutritious dietary protein that both is palatable and has reduced environmental impact. However, strategies to support the production of cultured meats at the scale required for food consumption will be critical. In this review, we discuss the current challenges and opportunities of using edible scaffolds for scaling up the production of cultured meat. We provide an overview of different types of edible scaffolds, scaffold fabrication techniques, and common scaffold materials. Finally, we highlight potential advantages of using edible scaffolds to advance cultured meat production by accelerating cell growth and differentiation, providing structure to build complex 3D tissues, and enhancing the nutritional and sensory properties of cultured meat.more » « less
-
null (Ed.)Abstract Rapid increases in meat trade generate complex global networks across countries. However, there has been little research quantifying the dynamics of meat trade networks and the underlying forces that structure them. Using longitudinal network data for 134 countries from 1995 to 2015, we combined network modeling and cluster analysis to simultaneously identify the structural changes in meat trade networks and the factors that influence the networks themselves. The integrated network approach uncovers a general consolidation of global meat trade networks over time, although some global events may have weakened this consolidation both regionally and globally. In consolidated networks, the presence of trade agreements and short geographic distances between pairs of countries are associated with increases in meat trade. Countries with rapid population and income growth greatly depend on meat imports. Furthermore, countries with high food availability import large quantities of meat products to satisfy their various meat preferences. The findings from this network approach provide key insights that can be used to better understand the social and environmental consequences of increasing global meat trade.more » « less
-
Despite non-co-location, haptic stimulation at the wrist can potentially provide feedback regarding interactions at the fingertips without encumbering the user’s hand. Here we investigate how two types of skin deformation at the wrist (normal and shear) relate to the perception of the mechanical properties of virtual objects. We hypothesized that a congruent mapping (i.e. when the most relevant interaction forces during a virtual interaction spatially match the haptic feedback at the wrist) would result in better perception than other map- pings.We performed an experiment where haptic devices at the wrist rendered either normal or shear feedback during manipulation of virtual objects with varying stiffness, mass, or friction properties. Perception of mechanical properties was more accurate with congruent skin stimulation than noncongruent. In addition, discrimination performance and subjective reports were positively influenced by congruence. This study demonstrates that users can perceive mechanical properties via haptic feedback provided at the wrist with a consistent mapping between haptic feedback and interaction forces at the fingertips, regardless of congruence.more » « less
-
Abstract Different particle properties, such as shape, size, surface roughness, and constituent material stiffness, affect the mechanical behavior of coarse-grained soils. Systematic investigation of the individual effects of these properties requires careful control over other properties, which is a pervasive challenge in investigations with natural soils. The rapid advance of 3D printing technology provides the ability to produce analog particles with independent control over particle size and shape. This study examines the triaxial compression behavior of specimens of 3D printed sand particles and compares it to that of natural sand specimens. Drained and undrained isotropically-consolidated triaxial compression tests were performed on specimens composed of angular and rounded 3D printed and natural sands. The test results indicate that the 3D printed sands exhibit stress-dilatancy behavior that follows well-established flow rules, the angular 3D printed sand mobilizes greater critical state friction angle than that of rounded 3D printed sand, and analogous drained and undrained stress paths can be followed by 3D printed and natural sands with similar initial void ratios if the cell pressure is scaled. The results suggest that some of the fundamental behaviors of soils can be captured with 3D printed soils, and that the interpretation of their mechanical response can be captured with the critical state soil mechanics framework. However, important differences in response arise from the 3D printing process and the smaller stiffness of the printed polymeric material. Graphic abstract Artificial sand analogs were 3D printed from X-ray CT scans of sub-rounded and sub-angular natural sands. Triaxial compression tests were performed to characterize the strength and dilatancy behavior as well as critical staste parameters of the 3D printed sands and to compare it to that exhibited by the natural sands.more » « less
An official website of the United States government
