This content will become publicly available on April 3, 2026
Molecular tunnel junctions based on mixed SAMs: exponential correlation of the average metal–HOMO coupling with SAM/metal work function
This work provides critical insights into the relationship between work function and tunneling transport in mixed molecular junctions, demonstrating that conductance and metal–orbital coupling vary exponentially with work function differences.
more »
« less
- Award ID(s):
- 2304763
- PAR ID:
- 10601001
- Publisher / Repository:
- Royal Society of Chemistry
- Date Published:
- Journal Name:
- Nanoscale
- Volume:
- 17
- Issue:
- 14
- ISSN:
- 2040-3364
- Page Range / eLocation ID:
- 8912 to 8922
- Subject(s) / Keyword(s):
- molecular electronics tunneling molecular tunnel junction self-assembled monolayer atomic force microscopy
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
We explore a possibility to control magnetic dipole emission with plasmonic cavities, placing Eu3+emitters inside profile-modulated metal-dielectric-metal structures. Significant variations in the branching ratio of the magnetic and electric dipole transitions are observed as the function of the thickness of the intermediate layer. The experimental results are confirmed with numerical simulations which account for cavity and gap plasmon resonances and predict modifications in the spontaneous emission spectrum as the function of the gap size and a strong directionality of the emission for small thicknesses of the intermediate layer. The implications of having a competition between electric and magnetic dipole relaxation channels in Eu3+are discussed.more » « less
-
Many biological macromolecules rely on metal ions to maintain structural integrity and control their regulatory function. In biological fluids, detection and identification of metal ions requires sensitive analytical tools with clear readouts. In this work, we sought to investigate the potential of solution Nuclear Magnetic Resonance (NMR) spectroscopy to analyze metal ion solutions and mixtures. To enable 1H NMR detection, we prepared the complexes of eight metal ions with the chelating agent, 1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid (BAPTA). The 1H NMR spectra were collected for BAPTA samples as a function of metal ion concentrations. The analysis of NMR data revealed that all metal ions with a notable exception of Mg2+ bind BAPTA with high affinities and form complexes with 1:1 metal-to-chelator stoichiometry. Both methylene and aromatic regions of the BAPTA 1H NMR spectra experience significant changes upon the metal ion complex formation. We identified the spectroscopic signatures of trivalent and paramagnetic ions and demonstrated that the binary Zn2+/Pb2+ metal ion mixture can be successfully analyzed by NMR. We conclude that complexation with BAPTA followed by the 1H NMR analysis is a sensitive method to detect and identify both nutritive and xenobiotic metal ions.more » « less
-
With plenty of charges and rich functional groups, bovine serum albumin (BSA) protein provides effective transport for multiple metallic ions inside blood vessels. Inspired by the unique ionic transport function, we develop a BSA protein coating to stabilize Li anode, regulate Li+ transport, and resolve the Li dendrite growth for Li metal batteries (LMBs). The experimental and simulation studies demonstrate that the coating has strong interactions with Li metal, increases the wetting with electrolyte, reduces the electrolyte/Li side reactions, and significantly suppresses the Li dendrite formation. As a result, the BSA coating exhibits excellent stability in the electrolyte and improves the performance of Li|Cu and Li|Li cells as well as the LiFePO4|Li batteries. This work reveals that LMBs can benefit from the biological function of BSA, i.e., special transport capability of metallic ions, and lays an important foundation in design of protein-based materials for effectively enhancing the electrochemical performance of energy storage systems.more » « less
-
Programmable manipulation of inorganic–organic interfacial electronic properties of ligand-functionalized plasmonic nanoparticles (NPs) is the key parameter dictating their applications such as catalysis, photovoltaics, and biosensing. Here we report the localized surface plasmon resonance (LSPR) properties of gold triangular nanoprisms (Au TNPs) in solid state that are functionalized with dipolar, conjugated ligands. A library of thiocinnamate ligands with varying surface dipole moments were used to functionalize TNPs, which results in ∼150 nm reversible tunability of LSPR peak wavelength with significant peak broadening (∼230 meV). The highly adjustable chemical system of thiocinnamate ligands is capable of shifting the Au work function down to 2.4 eV versus vacuum, i.e., ∼2.9 eV lower than a clean Au (111) surface, and this work function can be modulated up to 3.3 eV, the largest value reported to date through the formation of organothiolate SAMs on Au. Interestingly, the magnitude of plasmonic responses and work function modulation is NP shape dependent. By combining first-principles calculations and experiments, we have established the mechanism of direct wave function delocalization of electrons residing near the Fermi level into hybrid electronic states that are mostly dictated by the inorganic–organic interfacial dipole moments. We determine that both interfacial dipole and hybrid electronic states, and vinyl conjugation together are the key to achieving such extraordinary changes in the optoelectronic properties of ligand-functionalized, plasmonic NPs. The present study provides a quantitative relationship describing how specifically constructed organic ligands can be used to control the interfacial properties of NPs and thus the plasmonic and electronic responses of these functional plasmonics for a wide range of plasmon-driven applications.more » « less
An official website of the United States government
