skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 26, 2026

Title: Metal–ligand cooperativity enables zero-valent metal transfer
Group 13 aminoxy complexes, (L)E(TEMPO)3(TEMPO = 2,2,6,6-tetramethylpiperidine 1-oxyl; L = THF (tetrahydrofuran) or Py (pyridine); E = Al, Ga, In), display ambiphilic reactivity with H2and function as synthons for the preparation of materials.  more » « less
Award ID(s):
2153972
PAR ID:
10628051
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Royal Society of Chemistry
Date Published:
Journal Name:
Chemical Science
Volume:
16
Issue:
9
ISSN:
2041-6520
Page Range / eLocation ID:
3888 to 3894
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Aqueous organic redox flow batteries (AORFBs) are highly attractive for large‐scale energy storage because of their nonflammability, low cost, and sustainability. (2,2,6,6‐Tetramethylpiperidin‐1‐yl)oxyl (TEMPO) derivatives, a class of redox active molecules bearing air‐stable free nitroxyl radicals and high redox potential (>0.8 V vs NHE), has been identified as promising catholytes for AORFBs. However, reported TEMPO based molecules are either permeable through ion exchange membranes or not chemically stable enough for long‐term energy storage. Herein, a new TEMPO derivative functionalized with a dual‐ammonium dicationic group,N1, N1, N1, N3, N3, 2, 2, 6, 6‐nonamethyl‐N3‐(piperidinyloxy)propane‐1,3‐bis(ammonium) dichloride (N2‐TEMPO) as a stable, low permeable catholyte for AORFBs is reported. Ultraviolet–visible (UV–vis) and proton nuclear magnetic resonance (1H‐NMR) spectroscopic studies reveal its exceptional stability and ultra‐low permeability (1.49 × 10−12 cm2 s−1). Coupled with 1,1′‐bis[3‐(trimethylammonio)propyl]‐4,4′‐bipyridinium tetrachloride ((NPr)2V) as an anolyte, a 1.35 VN2‐TEMPO/(NPr)2V AORFB with 0.5 melectrolytes (9.05 Wh L−1) delivers a high power density of 114 mW cm−2and 100% capacity retention for 400 cycles at 60 mA cm−2. At 1.0 melectrolyte concentrations, theN2‐TEMPO/(NPr)2V AORFB achieves an energy density of 18.1 Wh L−1and capacity retention of 90% for 400 cycles at 60 mA cm−2
    more » « less
  2. Abstract Affinities of six anions (mesylate, acetate, trifluoroacetate,p‐toluenecarboxylate,p‐toluenesulfonate, and perfluorooctanoate) for three related Pt2+‐linked porphyrin nanocages were measured to probe the influence of different noncovalent recognition motifs (e. g., hydrogen bonding, electrostatics, π bonding) on anion binding. Two new hosts of M6L312+(1b) and M4L28+(2) composition (M=(en)Pt2+, L=(3‐py)4porphyrin) were prepared in a one‐pot synthesis and allowed comparison of hosts that differ in structure while maintaining similar N−H hydrogen‐bond donor ability. Comparisons of isostructural hosts that differ in hydrogen‐bonding ability were made between1band a related M6L312+nanoprism (1a, M=(tmeda)Pt2+) that lacks N−H groups. Considerable variation in association constants (K1=1.6×103 M−1to 1.3×108 M−1) and binding mode (exovs.endo) were found for different host–guest combinations. Strongest binding was seen betweenp‐toluenecarboxylate and1b, but surprisingly, association of this guest with1awas only slightly weaker despite the absence of NH⋅⋅⋅O interactions. The high affinity betweenp‐toluenecarboxylate and1acould be turned off by protonation, and this behavior was used to toggle between the binding of this guest and the environmental pollutant perfluorooctanoate, which otherwise has a lower affinity for the host. 
    more » « less
  3. Abstract Applications of TEMPO.catalysis for the development of redox‐neutral transformations are rare. Reported here is the first TEMPO.‐catalyzed, redox‐neutral C−H di‐ and trifluoromethoxylation of (hetero)arenes. The reaction exhibits a broad substrate scope, has high functional‐group tolerance, and can be employed for the late‐stage functionalization of complex druglike molecules. Kinetic measurements, isolation and resubjection of catalytic intermediates, UV/Vis studies, and DFT calculations support the proposed oxidative TEMPO./TEMPO+redox catalytic cycle. Mechanistic studies also suggest that Li2CO3plays an important role in preventing catalyst deactivation. These findings will provide new insights into the design and development of novel reactions through redox‐neutral TEMPO.catalysis. 
    more » « less
  4. Abstract Radiation Belt Storm Probes (RBSP) data show that seed electrons generated by sub‐storm injections play a role in amplifying chorus waves in the magnetosphere. The wave‐particle interaction leads to rapid heating and acceleration of electrons from 10's of keV to 10's of MeV energies. In this work, we examined the changes in the radiation belt during geomagnetic storm events by studying the RBSP REPT, solar wind, AL, SML, and Dst data in conjunction with the WINDMI model of the magnetosphere. The field‐aligned current output from the model is integrated to generate a proxy E index for various energy bands. These E indices track electron energization from 40 KeV to 20 MeV in the radiation belts. The indices are compared to RBSP data and GOES data. Our proxy indices correspond well to the energization data for electron energy bands between 1.8 and 7.7 MeV. Each E index has a unique empirical loss rate term (τL), an empirical time delay term (τD), and a gain value, that are fit to the observations. These empirical parameters were adjusted to examine the delay and charging rates associated with different energy bands. We observed that theτLandτDvalues are clustered for each energy band.τLandτDconsistently increase going from 1.8 to 7.7 MeV in electron energy fluxEeand the dropout interval increases with increasing energy level. The average trend of ΔτD/ΔEewas 4.1 hr/MeV and the average trend of ΔτL/ΔEewas 2.82 hr/MeV. 
    more » « less
  5. Abstract Spacious M4L6tetrahedra can act as catalytic inhibitors for base‐mediated reactions. Upon adding only 5 % of a self‐assembled Fe4L6cage complex, the conversion of the conjugate addition between ethylcyanoacetate and β‐nitrostyrene catalyzed by proton sponge can be reduced from 83 % after 75 mins at ambient temperature to <1 % under identical conditions. The mechanism of the catalytic inhibition is unusual: the octacationic Fe4L6cage increases the acidity of exogenous water in the acetonitrile reaction solvent by favorably binding the conjugate acid of the basic catalyst. The inhibition only occurs for Fe4L6hosts with spacious internal cavities: minimal inhibition is seen with smaller tetrahedra or Fe2L3helicates. The surprising tendency of the cationic cage to preferentially bind protonated, cationic ammonium guests is quantified via the comprehensive modeling of spectrophotometric titration datasets. 
    more » « less