Abstract Our food system is complex, multifaceted, and in need of an upgrade. Population growth, climate change, and socioeconomic disparities are some of the challenges that create a systemic threat to its sustainability and capacity to address the needs of an evolving planet. The mission of the AI Institute of Next Generation Food Systems (AIFS) is to leverage the latest advances in AI to help create a more sustainable, efficient, nutritious, safe, and resilient food system. Instead of using AI in isolation, AIFS views it as the connective tissue that can bring together interconnected solutions from farm to fork. From guiding molecular breeding and building autonomous robots for precision agriculture, to predicting pathogen outbreaks and recommending personalized diets, AIFS projects aspire to pave the way for infrastructure and systems that empower practitioners to build the food system of the next generation. Workforce education, outreach, and ethical considerations related to the emergence of AI solutions in this sector are an integral part of AIFS with several collaborative activities aiming to foster an open dialogue and bringing closer students, trainees, teachers, producers, farmers, workers, policy makers, and other professionals.
more »
« less
This content will become publicly available on December 1, 2026
AI for food: accelerating and democratizing discovery and innovation
Abstract By 2050, feeding nearly 10 billion people will require transformative changes to ensure nutritious, sustainable food for all. Our current food system is inefficient and unsustainable. Traditional attempts to transform the global food system are too slow to drive innovation at scale. Here we explore the potential of artificial intelligence to reshape the future of food. We review the state of the art in food development, discuss the data needed to define a new food product, and highlight seven challenges where AI can help us design nutritious, delicious, and sustainable foods for all. By leveraging AI to democratize food innovation, we can accelerate the transition to resilient global food systems that meet the urgent challenges of food security, climate change, and planetary health.
more »
« less
- Award ID(s):
- 2320933
- PAR ID:
- 10601111
- Publisher / Repository:
- Springer
- Date Published:
- Journal Name:
- npj Science of Food
- Volume:
- 9
- Issue:
- 1
- ISSN:
- 2396-8370
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
BackgroundChronic diseases such as heart disease, stroke, diabetes, and hypertension are major global health challenges. Healthy eating can help people with chronic diseases manage their condition and prevent complications. However, making healthy meal plans is not easy, as it requires the consideration of various factors such as health concerns, nutritional requirements, tastes, economic status, and time limits. Therefore, there is a need for effective, affordable, and personalized meal planning that can assist people in choosing food that suits their individual needs and preferences. ObjectiveThis study aimed to design an artificial intelligence (AI)–powered meal planner that can generate personalized healthy meal plans based on the user’s specific health conditions, personal preferences, and status. MethodsWe proposed a system that integrates semantic reasoning, fuzzy logic, heuristic search, and multicriteria analysis to produce flexible, optimized meal plans based on the user’s health concerns, nutrition needs, as well as food restrictions or constraints, along with other personal preferences. Specifically, we constructed an ontology-based knowledge base to model knowledge about food and nutrition. We defined semantic rules to represent dietary guidelines for different health concerns and built a fuzzy membership of food nutrition based on the experience of experts to handle vague and uncertain nutritional data. We applied a semantic rule-based filtering mechanism to filter out food that violate mandatory health guidelines and constraints, such as allergies and religion. We designed a novel, heuristic search method that identifies the best meals among several candidates and evaluates them based on their fuzzy nutritional score. To select nutritious meals that also satisfy the user’s other preferences, we proposed a multicriteria decision-making approach. ResultsWe implemented a mobile app prototype system and evaluated its effectiveness through a use case study and user study. The results showed that the system generated healthy and personalized meal plans that considered the user’s health concerns, optimized nutrition values, respected dietary restrictions and constraints, and met the user’s preferences. The users were generally satisfied with the system and its features. ConclusionsWe designed an AI-powered meal planner that helps people create healthy and personalized meal plans based on their health conditions, preferences, and status. Our system uses multiple techniques to create optimized meal plans that consider multiple factors that affect food choice. Our evaluation tests confirmed the usability and feasibility of the proposed system. However, some limitations such as the lack of dynamic and real-time updates should be addressed in future studies. This study contributes to the development of AI-powered personalized meal planning systems that can support people’s health and nutrition goals.more » « less
-
Food production data — such as crop, livestock, aquaculture and fisheries statistics — are critical to achieving multiple sustainable development goals. However, the lack of reliable, regularly collected, accessible, usable and spatially disaggregated statistics limits an accurate picture of the state of food production in many countries and prevents the implementation of effective food system interventions. In this Review, we take stock of national and international food production data to understand its availability and limitations. Across databases, there is substantial global variation in data timeliness, granularity (both spatially and by food category) and transparency. Data scarcity challenges are most pronounced for livestock and aquatic food production. These challenges are largely concentrated in Central America, the Middle East and Africa owing to a combination of inconsistent census implementation and a global reliance on self-reporting. Because data scarcity is the result of technical, institutional and political obstacles, solutions must include technological and policy innovations. Fusing traditional and emerging data-gathering techniques with coordinated governance and dedicated long-term financing will be key to overcoming current obstacles to sustained, up-to-date and accurate food production data collection, foundational in promoting and monitoring progress towards healthier and more sustainable food systems worldwide.more » « less
-
Abstract Urban agriculture has significant potential to address food security and nutritional challenges in cities. However, water access for urban food production poses a major challenge in the face of climate change and growing global freshwater scarcity, particularly in arid and semi‐arid areas. To support sustainable urban food production, this study focuses on a hybrid urban water system that integrates two important alternative water resources: a decentralized system of rainwater harvesting (RWH) and a centralized reclaimed water system. A new spatial optimization model is developed to identify the best investment strategy for deploying these two alternative water infrastructures to expand urban food production. The model is applied to the case study in Tucson, Arizona, a semi‐arid city in U.S. Southwest, to address food deserts in the region. Results show that 72%–96% of the investment is allocated to rainwater tanks deployment across all investment scenarios, with the proportion of investment in rainwater harvesting increasing as total investment rises. However, rainwater contributes only about 18%–27% of the total food production. The results of our case study indicate that expanding the reclaimed water network is more effective for urban food production and is also more cost‐efficient compared to implementing rainwater tanks. The new model can be applied to other regions, taking into account factors such as crop types, climate, soil conditions, infrastructure configurations, costs, and other site‐specific variables. The study provides valuable insights for planning urban water systems that incorporate alternative water sources under different investment scenarios.more » « less
-
Abstract Non-technical summaryThe Anthropocene era demands urgent societal changes as we exceed planetary limits. Addressing key sustainability and governance challenges requires inter- and transdisciplinary approaches. Future Earth, a global initiative, brings together leading scholars to advance sustainability science by connecting natural and social sciences and humanities with policymaking. This Special Collection emerged from a 2021 call by Future Earth. Featuring 12 manuscripts, it explores themes like cutting-edge sustainability knowledge, interdisciplinary methods, cultural and developmental issues, and strategies for sustainable transformations. This collection offers a forward-looking view on critical research to guide policy and funding for a sustainable world. Technical summaryThe Anthropocene era necessitates urgent societal changes as we surpass planetary boundaries. Addressing the pressing questions of biogeochemical monitoring, feedback mechanisms, and effective governance systems requires interdisciplinary approaches. Future Earth, a global initiative formed by consolidating networks from major research programs, has been pivotal in advancing sustainability science through such approaches. By bridging natural and social sciences and humanities for enhancing the science–policy interface, Future Earth fosters research and innovation essential for global sustainability transformations. This Special Collection, ‘Charting the Course for the Next Decade of Sustainability Research and Innovation,’ arose from a 2021 call by Future Earth. The Special Collection highlights key scientific questions and future research directions. Contributions span themes such as state-of-the-art sustainability knowledge, transdisciplinary methods, cultural and developmental tensions, multi-actor process efficacy, and integrated knowledge for sustainable transformations. With manuscripts sourced from Future Earth's Global Research Networks and other aligned organizations, this issue underscores a forward-looking perspective on critical interdisciplinary and transdisciplinary research needed to support high-level policy and funding directions, ultimately aiming to inform societal decisions for a sustainable and equitable world. We conclude that addressing the sustainability crisis requires a diverse and multi-faceted approach that draws upon the best knowledge of humankind. Social media summaryExplore urgent societal changes and sustainability science with Future Earth's Collection on sustainability research.more » « less
An official website of the United States government
