skip to main content


This content will become publicly available on April 1, 2025

Title: Assessing and addressing the global state of food production data scarcity
Food production data — such as crop, livestock, aquaculture and fisheries statistics — are critical to achieving multiple sustainable development goals. However, the lack of reliable, regularly collected, accessible, usable and spatially disaggregated statistics limits an accurate picture of the state of food production in many countries and prevents the implementation of effective food system interventions. In this Review, we take stock of national and international food production data to understand its availability and limitations. Across databases, there is substantial global variation in data timeliness, granularity (both spatially and by food category) and transparency. Data scarcity challenges are most pronounced for livestock and aquatic food production. These challenges are largely concentrated in Central America, the Middle East and Africa owing to a combination of inconsistent census implementation and a global reliance on self-reporting. Because data scarcity is the result of technical, institutional and political obstacles, solutions must include technological and policy innovations. Fusing traditional and emerging data-gathering techniques with coordinated governance and dedicated long-term financing will be key to overcoming current obstacles to sustained, up-to-date and accurate food production data collection, foundational in promoting and monitoring progress towards healthier and more sustainable food systems worldwide.  more » « less
Award ID(s):
1757353 2125913
PAR ID:
10513836
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Springer
Date Published:
Journal Name:
Nature Reviews Earth & Environment
Volume:
5
Issue:
4
ISSN:
2662-138X
Page Range / eLocation ID:
295 to 311
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The framing of global food challenges as a matter of producing enough protein deserves critical assessment. We argue that powerful actors in the food system are responding to this apparent protein shortage in a way that deflects from the critical environmental and social challenges associated with conventional livestock production. 
    more » « less
  2. null (Ed.)
    The small Mediterranean country of Malta, an island located between Italy and North Africa, has been facing and will continue to face water stress and scarcity in the coming years, receiving the designation as the most water stressed country in Europe. In the past, Malta’s water challenges were centered around water quantity concerns, but in more recent years, the severity of their water stress has been strengthened by the deterioration of the groundwater quality and quantity. Through the over-extraction of their groundwater, saltwater intrusion has steadily occurred into their freshwater aquifer systems, worsening their groundwater quality for both domestic and agricultural purposes. The objective of this paper is to conduct an extensive review on the history of Malta’s water problems and how Malta is working to combat its water scarcity concerns. Additionally, this paper investigates the impact of Malta’s water scarcity on its food and energy security challenges. Our study concludes that while Malta has obstacles to overcome in their pursuit of water security and sustainable development, the future remains hopeful, with several alternatives still available. Some of the alternatives explored in this review include wastewater reuse, increased awareness, use of alternative energy sources, rainwater harvesting, and implementation of nation-wide strategic water policies. 
    more » « less
  3. Artificial General Intelligence (AGI) is poised to revolutionize a variety of sectors, including healthcare, finance, transportation, and education. Within healthcare, AGI is being utilized to analyze clinical medical notes, recognize patterns in patient data, and aid in patient management. Agriculture is another critical sector that impacts the lives of individuals worldwide. It serves as a foundation for providing food, fiber, and fuel, yet faces several challenges, such as climate change, soil degradation, water scarcity, and food security. AGI has the potential to tackle these issues by enhancing crop yields, reducing waste, and promoting sustainable farming practices. It can also help farmers make informed decisions by leveraging real-time data, leading to more efficient and effective farm management. This paper delves into the potential future applications of AGI in agriculture, such as agriculture image processing, natural language processing (NLP), robotics, knowledge graphs, and infrastructure, and their impact on precision livestock and precision crops. By leveraging the power of AGI, these emerging technologies can provide farmers with actionable insights, allowing for optimized decision-making and increased productivity. The transformative potential of AGI in agriculture is vast, and this paper aims to highlight its potential to revolutionize the industry. 
    more » « less
  4. null (Ed.)
    Antimicrobial resistance is a threat to global health, aggravated by the use of antimicrobials in livestock production. Mitigating the growing economic costs related to antimicrobial use in livestock production requires strong global coordination, and to that end policy makers can leverage global and national food animal trade policies, such as bans and user fees. Evaluation of such policies requires representing the interactions between competing producers in the global meat market, which is usually out of the scope of statistical models. For that, we developed a game-theoretic food system model of global livestock production and trade between 18 countries and aggregate world regions. The model comprises the largest producing and consuming countries, the explicit interconnections between countries, and the use of antimicrobials in food animal production. Our model allows us to provide policy insights beyond standard literature and assess the trade-off between trade, cost of a policy, and antimicrobials-induced productivity. We studied three scenarios: global increased user fees on antimicrobials, a global ban of meat imports from Brazil, and a decrease in China's meat consumption. We found that a user fee that increases the price of antimicrobials by 50% globally leads to a 33% reduction in global antimicrobial use. However, participation of developing and emerging countries in the coordination scheme is jeopardized, since they become less competitive for meat sales compared to developed countries. When meat imports from Brazil are banned globally, importers of Brazil's meat would turn primarily to the U.S. to supplement their demand. Lastly, meeting China's medium-term lower meat consumption target would not affect global antimicrobial use, but could increase China's antimicrobial use by 11%. We highlighted the importance of trade for the outcome of a policy and concluded that global cooperation is required to align the incentives of all countries toward tackling antimicrobial resistance. 
    more » « less
  5. Abstract

    Food consumption and production are separated in space through flows of food along complex supply chains. These food supply chains are critical to our food security, making it important to evaluate them. However, detailed spatial information on food flows within countries is rare. The goal of this paper is to estimate food flows between all county pairs within the United States. To do this, we develop the Food Flow Model, a data-driven methodology to estimate spatially explicit food flows. The Food Flow Model integrates machine learning, network properties, production and consumption statistics, mass balance constraints, and linear programming. Specifically, we downscale empirical information on food flows between 132 Freight Analysis Framework locations (17 292 potential links) to the 3142 counties and county-equivalents of the United States (9869 022 potential links). Subnational food flow estimates can be used in future work to improve our understanding of vulnerabilities within a national food supply chain, determine critical infrastructures, and enable spatially detailed footprint assessments.

     
    more » « less