skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Nitrogen fertilization rates in a subtropical peach orchard: Effect on fruit nutritional value and flavor
Abstract BackgroundThe necessity to help farmers improve yields has resulted in many years of agricultural research focused on productivity and disease resistance, neglecting other areas of fruit quality such as flavor, health benefits, and external appearance. Nitrogen is required for several biochemical processes. However, reducing N fertilization can increase the synthesis of antioxidants and volatile aroma compounds. Four‐N rates (0 (N0), 45 (N1), 90 (N2), 179 (N3), and 269 (N4) kg ha−1) were tested each year from 2011 to 2017 in two peach varieties melting flesh (MF) ‘TropicBeauty’ (TB), a soft texture peach, and non‐melting flesh (NMF) ‘UFSharp’ (UFS), a crispy texture peach, to determine the effect of N on nutritional value and flavor. ResultsThe phytochemical composition of the NMF ‘UFSharp’ (UFS) and MF variety ‘TropicBeauty’ (TB) were not cleared affected by N rates. Volatile synthesis was little affected by N. The sensory evaluation showed that consumers preferred MF peaches compared with NMF, because of its juiciness. ConclusionsNitrogen fertilization had minor effects on peach fruit phytochemical composition, volatile aroma compounds, and consumer acceptability. The N effect could had been influence by pruning practices, training of the orchard, and the delay of fruit developmental period.  more » « less
Award ID(s):
2151032
PAR ID:
10601190
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
John Wiley & Sons, Inc
Date Published:
Journal Name:
JSFA reports
Volume:
4
Issue:
3
ISSN:
2573-5098
Page Range / eLocation ID:
148 to 162
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract PremiseThe scents of volatile organic compounds (VOCs) are an important component of ripe fleshy fruit attractiveness, yet their variation across closely related wild species is poorly understood. Phylogenetic patterns in these compounds and their biosynthetic pathways offer insight into the evolutionary drivers of fruit diversity, including whether scent can communicate an honest signal of nutrient content to animal dispersers. We assessed ripe fruit VOC content across the tomato clade (Solanumsect.Lycopersicon), with implications for crop improvement since these compounds are key components of tomato flavor. MethodsWe analyzed ripe fruit volatiles from 13 species of wild tomato grown in a common garden. Interspecific variations in 66 compounds and their biosynthetic pathways were assessed in 32 accessions, and an accession‐level phylogeny was constructed to account for relatedness. ResultsWild tomato species can be differentiated by their VOCs, withSolanum pennelliinotably distinct. Phylogenetic conservatism exists to a limited extent. Major cladewide patterns corresponded to divergence of the five brightly colored‐fruited species from the nine green‐fruited species, particularly for nitrogen‐containing compounds (higher in colored‐fruited) and esters (higher in green‐fruited), the latter appearing to signal a sugar reward. ConclusionsWe established a framework for fruit scent evolution studies in a crop wild relative system, showing that each species in the tomato clade has a unique VOC profile. Differences between color groups align with fruit syndromes that could be driven by selection from frugivores. The evolution of colored fruits was accompanied by changes in biosynthetic pathways for esters and nitrogen‐containing compounds, volatiles important to tomato flavor. 
    more » « less
  2. Tomato ( Solanum lycopersicum ) produces a wide range of volatile chemicals during fruit ripening, generating a distinct aroma and contributing to the overall flavor. Among these volatiles are several aromatic and aliphatic nitrogen-containing compounds for which the biosynthetic pathways are not known. While nitrogenous volatiles are abundant in tomato fruit, their content in fruits of the closely related species of the tomato clade is highly variable. For example, the green-fruited species Solanum pennellii are nearly devoid, while the red-fruited species S. lycopersicum and Solanum pimpinellifolium accumulate high amounts. Using an introgression population derived from S. pennellii , we identified a locus essential for the production of all the detectable nitrogenous volatiles in tomato fruit. Silencing of the underlying gene ( SlTNH1 ; Solyc12g013690 ) in transgenic plants abolished production of aliphatic and aromatic nitrogenous volatiles in ripe fruit, and metabolomic analysis of these fruit revealed the accumulation of 2-isobutyl-tetrahydrothiazolidine-4-carboxylic acid, a known conjugate of cysteine and 3-methylbutanal. Biosynthetic incorporation of stable isotope-labeled precursors into 2-isobutylthiazole and 2-phenylacetonitrile confirmed that cysteine provides the nitrogen atom for all nitrogenous volatiles in tomato fruit. Nicotiana benthamiana plants expressing SlTNH1 readily transformed synthetic 2-substituted tetrahydrothiazolidine-4-carboxylic acid substrates into a mixture of the corresponding 2-substituted oxime, nitro, and nitrile volatiles. Distinct from other known flavin-dependent monooxygenase enzymes in plants, this tetrahydrothiazolidine-4-carboxylic acid N -hydroxylase catalyzes sequential hydroxylations. Elucidation of this pathway is a major step forward in understanding and ultimately improving tomato flavor quality. 
    more » « less
  3. SUMMARY The unique flavors of different fruits depend upon complex blends of soluble sugars, organic acids, and volatile organic compounds. 2‐Phenylethanol and phenylacetaldehyde are major contributors to flavor in many foods, including tomato. In the tomato fruit, glucose, and fructose are the chemicals that most positively contribute to human flavor preferences. We identified a gene encoding a tomato aldo/keto reductase,Sl‐AKR9, that is associated with phenylacetaldehyde and 2‐phenylethanol contents in fruits. Two distinct haplotypes were identified; one encodes a chloroplast‐targeted protein while the other encodes a transit peptide‐less protein that accumulates in the cytoplasm. Sl‐AKR9 effectively catalyzes reduction of phenylacetaldehyde to 2‐phenylethanol. The enzyme can also metabolize sugar‐derived reactive carbonyls, including glyceraldehyde and methylglyoxal. CRISPR‐Cas9‐induced loss‐of‐function mutations inSl‐AKR9significantly increased phenylacetaldehyde and lowered 2‐phenylethanol content in ripe fruit. Reduced fruit weight and increased soluble solids, glucose, and fructose contents were observed in the loss‐of‐function fruits. These results reveal a previously unidentified mechanism affecting two flavor‐associated phenylalanine‐derived volatile organic compounds, sugar content, and fruit weight. Modern varieties of tomato almost universally contain the haplotype associated with larger fruit, lower sugar content, and lower phenylacetaldehyde and 2‐phenylethanol, likely leading to flavor deterioration in modern varieties. 
    more » « less
  4. null (Ed.)
    Abstract Background Genome structural variations (SVs) have been associated with key traits in a wide range of agronomically important species; however, SV profiles of peach and their functional impacts remain largely unexplored. Results Here, we present an integrated map of 202,273 SVs from 336 peach genomes. A substantial number of SVs have been selected during peach domestication and improvement, which together affect 2268 genes. Genome-wide association studies of 26 agronomic traits using these SVs identify a number of candidate causal variants. A 9-bp insertion in Prupe.4G186800 , which encodes a NAC transcription factor, is shown to be associated with early fruit maturity, and a 487-bp deletion in the promoter of PpMYB10.1 is associated with flesh color around the stone. In addition, a 1.67 Mb inversion is highly associated with fruit shape, and a gene adjacent to the inversion breakpoint, PpOFP1 , regulates flat shape formation. Conclusions The integrated peach SV map and the identified candidate genes and variants represent valuable resources for future genomic research and breeding in peach. 
    more » « less
  5. Flavor and quality are the major drivers of fruit consumption in the US. However, the poor flavor of modern commercial tomato varieties is a major cause of consumer dissatisfaction. Studies in flavor research have informed the role of volatile organic compounds in improving overall liking and sweetness of tomatoes. These studies have utilized and applied the tools of molecular biology, genetics, biochemistry, omics, machine learning, and gene editing to elucidate the compounds and biochemical pathways essential for good tasting fruit. Here, we discuss the progress in identifying the biosynthetic pathways and chemical modifications of important tomato volatile compounds. We also summarize the advances in developing highly flavorful tomato varieties and future steps toward developing a “perfect tomato”. 
    more » « less