skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: When pleas precede evidence: Using Bayesian analyses to establish the importance of a reasonable standard for evidence prior to plea offers
In most U.S. jurisdictions, prosecutors are not required to clearly establish a reasonable basis for guilt prior to offering defendants plea deals. We apply Bayesian analyses, which are uniquely suited to illuminate the impact of prior probability of guilt on the informativeness of a particular outcome (i.e., a guilty plea), to demonstrate the risks of plea offers that precede evidence. Our primary prediction was that lower prior probabilities of guilt would coincide with a significantly higher risk for false guilty pleas. We incorporated data from Wilford, Sutherland into a Bayesian analysis allowing us to model the expected diagnosticity of plea acceptance across the full range of prior probability of guilt. Our analysis indicated that, as predicted, when plea offers are accepted at lower prior probabilities of guilt, the probability that a plea is actually false is significantly higher than when prior probabilities of guilt are higher. In other words, there is a trade-off between prior probability of guilt and information gain. For instance, in our analysis, when prior probability of guilt was 50%, posterior probability of guilt (after a plea) was 77.8%; when prior probability of guilt was 80%, posterior probability of guilt was 93.3%. Our results clearly indicate the importance of ensuring that there is a reasonable basis for guilt before a plea deal is extended. In the absence of shared discovery, no such reasonable basis can be established. Further, these results illustrate the additional insights gained from applying a Bayesian approach to plea-decision contexts.  more » « less
Award ID(s):
1844585
PAR ID:
10601195
Author(s) / Creator(s):
; ;
Editor(s):
McLellan, Myles F
Publisher / Repository:
The University of Alberta Library
Date Published:
Journal Name:
The wrongful conviction law review
ISSN:
2563-2574
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Bayesian inference gets its name fromBayes’s theorem, expressing posterior probabilities for hypotheses about a data generating process as the (normalized) product of prior probabilities and a likelihood function. But Bayesian inference uses all of probability theory, not just Bayes’s theorem. Many hypotheses of scientific interest arecomposite hypotheses, with the strength of evidence for the hypothesis dependent on knowledge about auxiliary factors, such as the values of nuisance parameters (e.g., uncertain background rates or calibration factors). Many important capabilities of Bayesian methods arise from use of the law of total probability, which instructs analysts to compute probabilities for composite hypotheses bymarginalizationover auxiliary factors. This tutorial targets relative newcomers to Bayesian inference, aiming to complement tutorials that focus on Bayes’s theorem and how priors modulate likelihoods. The emphasis here is on marginalization over parameter spaces—both how it is the foundation for important capabilities, and how it may motivate caution when parameter spaces are large. Topics covered include the difference between likelihood and probability, understanding the impact of priors beyond merely shifting the maximum likelihood estimate, and the role of marginalization in accounting for uncertainty in nuisance parameters, systematic error, and model misspecification. 
    more » « less
  2. We present a novel technique for tailoring Bayesian quadrature (BQ) to model selection. The state-of-the-art for comparing the evidence of multiple models relies on Monte Carlo methods, which converge slowly and are unreliable for computationally expensive models. Although previous research has shown that BQ offers sample efficiency superior to Monte Carlo in computing the evidence of an individual model, applying BQ directly to model comparison may waste computation producing an overly-accurate estimate for the evidence of a clearly poor model. We propose an automated and efficient algorithm for computing the most-relevant quantity for model selection: the posterior model probability. Our technique maximizes the mutual information between this quantity and observations of the models’ likelihoods, yielding efficient sample acquisition across disparate model spaces when likelihood observations are limited. Our method produces more-accurate posterior estimates using fewer likelihood evaluations than standard Bayesian quadrature and Monte Carlo estimators, as we demonstrate on synthetic and real-world examples. 
    more » « less
  3. null (Ed.)
    Feeling guilty when we have wronged another is a crucial aspect of prosociality, but its neurobiological bases are elusive. Although multivariate patterns of brain activity show promise for developing brain measures linked to specific emotions, it is less clear whether brain activity can be trained to detect more complex social emotional states such as guilt. Here, we identified a distributed guilt-related brain signature (GRBS) across two independent neuroimaging datasets that used interpersonal interactions to evoke guilt. This signature discriminated conditions associated with interpersonal guilt from closely matched control conditions in a cross-validated training sample (N = 24; Chinese population) and in an independent test sample (N = 19; Swiss population). However, it did not respond to observed or experienced pain, or recalled guilt. Moreover, the GRBS only exhibited weak spatial similarity with other brain signatures of social-affective processes, further indicating the specificity of the brain state it represents. These findings provide a step toward developing biological markers of social emotions, which could serve as important tools to investigate guilt-related brain processes in both healthy and clinical populations. 
    more » « less
  4. We propose a stochastic variational inference algorithm for training large-scale Bayesian networks, where noisy-OR conditional distributions are used to capture higher-order relationships. One application is to the learning of hierarchical topic models for text data. While previous work has focused on two-layer networks popular in applications like medical diagnosis, we develop scalable algorithms for deep networks that capture a multi-level hierarchy of interactions. Our key innovation is a family of constrained variational bounds that only explicitly optimize posterior probabilities for the sub-graph of topics most related to the sparse observations in a given document. These constrained bounds have comparable accuracy but dramatically reduced computational cost. Using stochastic gradient updates based on our variational bounds, we learn noisy-OR Bayesian networks orders of magnitude faster than was possible with prior Monte Carlo learning algorithms, and provide a new tool for understanding large-scale binary data. 
    more » « less
  5. In this paper, we present a model to obtain prior knowledge for organ localization in CT thorax images using three dimensional convolutional neural networks (3D CNNs). Specifically, we use the knowledge obtained from CNNs in a Bayesian detector to establish the presence and location of a given target organ defined within a spherical coordinate system. We train a CNN to perform a soft detection of the target organ potentially present at any point, x = [r,Θ,Φ]T. This probability outcome is used as a prior in a Bayesian model whose posterior probability serves to provide a more accurate solution to the target organ detection problem. The likelihoods for the Bayesian model are obtained by performing a spatial analysis of the organs in annotated training volumes. Thoracic CT images from the NSCLC–Radiomics dataset are used in our case study, which demonstrates the enhancement in robustness and accuracy of organ identification. The average value of the detector accuracies for the right lung, left lung, and heart were found to be 94.87%, 95.37%, and 90.76% after the CNN stage, respectively. Introduction of spatial relationship using a Bayes classifier improved the detector accuracies to 95.14%, 96.20%, and 95.15%, respectively, showing a marked improvement in heart detection. This workflow improves the detection rate since the decision is made employing both lower level features (edges, contour etc) and complex higher level features (spatial relationship between organs). This strategy also presents a new application to CNNs and a novel methodology to introduce higher level context features like spatial relationship between objects present at a different location in images to real world object detection problems. 
    more » « less