skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 24, 2026

Title: Minute-scale dynamics of recurrent dike intrusions in Iceland with fiber-optic geodesy
Continuous geodetic measurements near volcanic systems can image magma transport dynamics, yet resolving dike intrusions with high spatiotemporal resolution remains challenging. We introduce fiber-optic geodesy, leveraging low-frequency distributed acoustic sensing (LFDAS) recordings along a telecommunication fiber-optic cable, to track dike intrusions near Grindavík, Iceland, on a minute timescale. LFDAS reveals distinct strain responses from nine intrusive events, six resulting in fissure eruptions. Geodetic inversion of LFDAS strain reveals detailed magmatic intrusions, with inferred dike volume rate peaking systematically 15 to 22 min before the onset of each eruption. Our results demonstrate DAS’s potential for a dense strainmeter array, enabling high-resolution, nearly real-time imaging of subsurface quasi-static deformations. In active volcanic regions, LFDAS recordings can offer critical insights into magmatic evolution, eruption forecasting, and hazard assessment.  more » « less
Award ID(s):
1848166
PAR ID:
10601312
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Science
Date Published:
Journal Name:
Science
ISSN:
0036-8075
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The stress field perturbation caused by magmatic intrusions within volcanic systems induces strain in the surrounding region. This effect results in the opening and closing of microcracks in the vicinity of the intrusion, which can affect regional seismic velocities. In late November 2023, we deployed a distributed acoustic sensing interrogator to convert an existing 100‐km telecommunication fiber‐optic cable along the coast of Iceland's Reykjanes peninsula into a dense seismic array, which has run continuously. Measuring changes in surface wave moveout with ambient noise cross‐correlation, we observe up to 2% changes in Rayleigh wave phase velocity following eruptions in the peninsula's 2023–2024 sequence that are likely associated with magmatic intrusions into the eruption‐feeding dike. We apply a Bayesian inversion to compute the posterior distribution of potential dike opening models for each eruption by considering measurements for varying channel pairs and frequency bands, and assuming this velocity change is tied to volumetric strain associated with dike‐opening. Our results are in agreement with those based on geodetic measurement and provide independent constraints on the depth of the dike, demonstrating the viability of this novel inversion and new volcano monitoring directions through fiber sensing. 
    more » « less
  2. Abstract Permeability controls energy and matter fluxes in deep‐sea hydrothermal systems fueling a 'deep biosphere' of microorganisms. Here, we indirectly measure changes in sub‐seafloor crustal permeability, based on the tidal response of high‐temperature hydrothermal vents at the East Pacific Rise 9°50’N preceding the last phase of volcanic eruptions during 2005–2006. Ten months before the last phase of the eruptions, permeability decreased, first rapidly, and then steadily as the stress built up, until hydrothermal flow stopped altogether ∼2 weeks prior to the January 2006 eruption phase. This trend was interrupted by abrupt permeability increases, attributable to dike injection during last phase of the eruptions, which released crustal stress, allowing hydrothermal flow to resume. These observations and models suggest that abrupt changes in crustal permeability caused by magmatic intrusion and volcanic eruption can control first‐order hydrothermal circulation processes. This methodology has the potential to aid eruption forecasting along the global mid‐ocean ridge network. 
    more » « less
  3. Abstract Unrest began in July 2021 at Askja volcano in the Northern Volcanic Zone (NVZ) of Iceland. Its most recent eruption, in 1961, was predominantly effusive and produced ∼0.1 km3lava field. The last plinian eruption at Askja occurred in 1875. Geodetic measurements between 1983 and 2021 detail subsidence of Askja, decaying in an exponential manner. At the end of July 2021, inflation was detected at Askja volcano, from GNSS observations and Sentinel‐1 interferograms. The inflationary episode can be divided into two periods from the onset of inflation until September 2023. An initial period until 20 September 2021 when geodetic models suggest transfer of magma (or magmatic fluids) from within the shallowest part of the magmatic system (comprising an inflating and deflating source), potentially involving silicic magma. A following period when one source of pressure increase at shallow depth can explain the observations. 
    more » « less
  4. Abstract Empirical Green Functions (EGFs) obtained from ambient noise cross‐correlation are important for imaging and monitoring underground structures. The EGFs on the Island of Hawai'i in different years are similar at low frequencies (0.1–0.4 Hz), but very different at high frequencies (0.4–1.0 Hz): Only the EGFs after the 2018 Kı̄lauea eruption show clear P waves. Grid search reveals a strong noise source near the Kı̄lauea summit before the eruption, which contaminated the EGFs but became silent after the eruption. Modeling of the P waves identifies the direct arrival and post‐critical reflections from two velocity discontinuities at 4.7 and 7.2 km depth beneath the island, which we interpret as the base of volcanic edifices and deposits and the boundary between basaltic dikes and gabbros, respectively. The P waves in EGFs could provide valuable high‐resolution constraints for monitoring deep magmatic changes and imaging the volcano structures. 
    more » « less
  5. Abstract We present a model for a coupled magma chamber–dike system to investigate the conditions required to initiate volcanic eruptions and to determine what controls the size of eruptions. The model combines the mechanics of dike propagation with internal chamber dynamics including crystallization, volatile exsolution, and the elastic response of the magma and surrounding crust to pressure changes within the chamber. We find three regimes for dike growth and eruptions: (1) below a critical magma chamber size, eruptions are suppressed because chamber pressure drops to lithostatic before a dike reaches the surface; (2) at an intermediate chamber size, the erupted volume is less than the dike volume (“dike-limited” eruption regime); and (3) above a certain chamber size, dikes can easily reach the surface and the erupted volume follows a classic scaling law, which depends on the attributes of the magma chamber (“chamber-limited” eruption regime). The critical chamber volume for an eruption ranges from ∼0.01 km3 to 10 km3 depending on the water content in the magma, depth of the chamber, and initial overpressure. This implies that the first eruptions at a volcano likely are preceded by a protracted history of magma chamber growth at depth, and that the crust above the magma chamber may have trapped several intrusions or “failed eruptions.” Model results can be combined with field observations of erupted volume, pressure, and crystal and volatile content to provide tighter constraints on parameters such as the eruptible chamber size. 
    more » « less