Diagnosing hypertension or hemodialysis requires patients to carry a blood pressure (BP) monitoring device for 24 hours. Th erefore, wearing the wrist/arm-based BP monitoring device, in this case, has a signifi cant impact on users' daily activities. To address the problem, we developed eBP, an ear-worn device that measures blood pressure from inside the ear. Th rough the evaluation of 35 subjects, eBP can achieve the average error of 1.8 mmHg for systolic BP and -3.1 mmHg for diastolic BP with the standard deviation error of 7.2 mmHg and 7.9 mmHg, respectively. 
                        more » 
                        « less   
                    
                            
                            eBP: an ear-worn device for frequent and comfortable blood pressure monitoring
                        
                    
    
            Frequent blood pressure monitoring is the key to diagnosis and treatments of many severe diseases. However, the conventional ambulatory methods require patients to carry a blood pressure (BP) monitoring device for 24 h and conduct the measurement every 10--15 min. Despite their extensive usage, wearing the wrist/arm-based BP monitoring device for a long time has a significant impact on users' daily activities. To address the problem, we developed eBP to measure blood pressure (BP) from inside user's ear aiming to minimize the measurement's impact on users' normal activities although maximizing its comfort level. The key novelty of eBP includes (1) a light-based inflatable pulse sensor which goes inside the ear, (2) a digital air pump with a fine controller, and (3) BP estimation algorithms that eliminate the need of blocking the blood flow inside the ear. Through the comparative study of 35 subjects, eBP can achieve the average error of 1.8 mmHg for systolic (high-pressure value) and -3.1 mmHg for diastolic (low-pressure value) with the standard deviation error of 7.2 mmHg and 7.9 mmHg, respectively. These results satisfy the FDA's AAMI standard, which requires a mean error of less than 5 mmHg and a standard deviation of less than 8 mmHg. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1846541
- PAR ID:
- 10601941
- Publisher / Repository:
- Association for Computing Machinery (ACM)
- Date Published:
- Journal Name:
- Communications of the ACM
- Volume:
- 64
- Issue:
- 8
- ISSN:
- 0001-0782
- Format(s):
- Medium: X Size: p. 118-125
- Size(s):
- p. 118-125
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            The ability to monitor blood gases, namely oxy-gen and carbon dioxide, in real-time is of critical importance to clinicians in diagnosing and treating respiratory disorders. Transcutaneous monitors measure the partial pressure of carbon dioxide diffused from the skin. These monitors are noninvasive and capable of continuously monitoring carbon dioxide. Conventional transcutaneous carbon dioxide monitors require a heating element and large calibration equipment for reliable measurements. We propose a miniaturized transcutaneous carbon dioxide monitor based on a luminescence sensing film and dual lifetime referencing technique to assess the partial pressure of carbon dioxide within the 0-75 mmHg range, covering the clinically relevant range for healthy humans, 35-45 mmHg. We measured the partial pressure of carbon dioxide with less than ~1.6% error in the given range without any post-processing and heating.more » « less
- 
            Continuous post-endovascular aneurysm repair (EVAR) surveillance is critical for patients who have undergone a stenting procedure. Despite its life-saving importance, studies have reported that patients gradually discontinue post-EVAR surveillance due to the significant burden associated with CT scans, X-rays, etc. Considering the importance and necessity of post-EVAR surveillance, we introduce a self-resonating flexible tube implanted in a standard clinically approved stent that enables wireless sensing of blood pressure inside an aneurysm through inductive coupling. To enable blood pressure monitoring outside the body, we designed and fabricated a spiral-type antenna, specifically crafted to capture the inherent resonance frequency of the self-resonating stent tube. To showcase the wireless pressure monitoring capability, a 3D-printed elastic model of an abdominal aortic aneurysm (AAA) was prepared. Our quantitative study validated the pressure-sensing capability with adequate sensitivity (up to 687.5 Hz/mmHg) when tissue was located between the stent and the external antenna. The wireless sensing also presents a consistent linear shift in resonance frequency across all tested measuring distances as the applied pressure ranges from 60 to 140 mmHg. The proposed self-resonating stent offers promising insights for improving post-EVAR surveillance.more » « less
- 
            Zama, Fabiana (Ed.)Despite the world-wide prevalence of hypertension, there is a lack in open-source software for analyzing blood pressure data. The R package bp fills this gap by providing functionality for blood pressure data processing, visualization, and feature extraction. In addition to the comprehensive functionality, the package includes six sample data sets covering continuous arterial pressure data (AP), home blood pressure monitoring data (HBPM) and ambulatory blood pressure monitoring data (ABPM), making it easier for researchers to get started. The R package bp is publicly available on CRAN and at https://github.com/johnschwenck/bp .more » « less
- 
            Abstract BackgroundMillions of catheters for invasive arterial pressure monitoring are placed annually in intensive care units, emergency rooms, and operating rooms to guide medical treatment decision-making. Accurate assessment of arterial blood pressure requires an IV pole-attached pressure transducer placed at the same height as a reference point on the patient’s body, typically, the heart. Every time a patient moves, or the bed is adjusted, a nurse or physician must adjust the height of the pressure transducer. There are no alarms to indicate a discrepancy between the patient and transducer height, leading to inaccurate blood pressure measurements. MethodsWe present a low-power wireless wearable tracking device that uses inaudible acoustic signals emitted from a speaker array to automatically compute height changes and correct the mean arterial blood pressure. Performance of this device was tested in 26 patients with arterial lines in place. ResultsOur system calculates the mean arterial pressure with a bias of 0.19, inter-class correlation coefficients of 0.959 and a median difference of 1.6 mmHg when compared to clinical invasive arterial measurements. ConclusionsGiven the increased workload demands on nurses and physicians, our proof-of concept technology may improve accuracy of pressure measurements and reduce the task burden for medical staff by automating a task that previously required manual manipulation and close patient surveillance.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
