skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1846541

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Traditional machine learning techniques are prone to generating inaccurate predictions when confronted with shifts in the distribution of data between the training and testing phases. This vulnerability can lead to severe consequences, especially in applications such as mobile healthcare. Uncertainty estimation has the potential to mitigate this issue by assessing the reliability of a model's output. However, existing uncertainty estimation techniques often require substantial computational resources and memory, making them impractical for implementation on microcontrollers (MCUs). This limitation hinders the feasibility of many important on-device wearable event detection (WED) applications, such as heart attack detection. In this paper, we present UR2M, a novel Uncertainty and Resource-aware event detection framework for MCUs. Specifically, we (i) develop an uncertainty-aware WED based on evidential theory for accurate event detection and reliable uncertainty estimation; (ii) introduce a cascade ML framework to achieve efficient model inference via early exits, by sharing shallower model layers among different event models; (iii) optimize the deployment of the model and MCU library for system efficiency. We conducted extensive experiments and compared UR2M to traditional uncertainty baselines using three wearable datasets. Our results demonstrate that UR2M achieves up to 864% faster inference speed, 857% energy-saving for uncertainty estimation, 55% memory saving on two popular MCUs, and a 22% improvement in uncertainty quantification performance. UR2M can be deployed on a wide range of MCUs, significantly expanding real-time and reliable WED applications. 
    more » « less
  2. Epilepsy is one of the most common neurological diseases globally, affecting around 50 million people worldwide. Fortunately, up to 70 percent of people with epilepsy could live seizure-free if properly diagnosed and treated, and a reliable technique to monitor the onset of seizures could improve the quality of life of patients who are constantly facing the fear of random seizure attacks. The scalp-based EEG test, despite being the gold standard for diagnosing epilepsy, is costly, necessitates hospitalization, demands skilled professionals for operation, and is discomforting for users. In this paper, we propose EarSD, a novel lightweight, unobtrusive, and socially acceptable ear-worn system to detect epileptic seizure onsets by measuring the physiological signals from behind the user's ears. EarSD includes an integrated custom-built sensing, computing, and communication PCB to collect and amplify the signals of interest, remove the noises caused by motion artifacts and environmental impacts, and stream the data wirelessly to the computer or mobile phone nearby, where data are uploaded to the host computer for further processing. We conducted both in-lab and in-hospital experiments with epileptic seizure patients who were hospitalized for seizure studies. The preliminary results confirm that EarSD can detect seizures with up to 95.3 percent accuracy by just using classical machine learning algorithms. 
    more » « less
  3. Difficulty falling asleep is one of the typical insomnia symptoms. However, intervention therapies available nowadays, ranging from pharmaceutical to hi-tech tailored solutions, remain ineffective due to their lack of precise real-time sleep tracking, in-time feedback on the therapies, and an ability to keep people asleep during the night. This paper aims to enhance the efficacy of such an intervention by proposing a novel sleep aid system that can sense multiple physiological signals continuously and simultaneously control auditory stimulation to evoke appropriate brain responses for fast sleep promotion. The system, a lightweight, comfortable, and user-friendly headband, employs a comprehensive set of algorithms and dedicated own-designed audio stimuli. Compared to the gold-standard device in 883 sleep studies on 377 subjects, the proposed system achieves (1) a strong correlation (0.89 ± 0.03) between the physiological signals acquired by ours and those from the gold-standard PSG, (2) an 87.8% agreement on automatic sleep scoring with the consensus scored by sleep technicians, and (3) a successful non-pharmacological real-time stimulation to shorten the duration of sleep falling by 24.1 min. Conclusively, our solution exceeds existing ones in promoting fast falling asleep, tracking sleep state accurately, and achieving high social acceptance through a reliable large-scale evaluation. 
    more » « less
  4. While the global healthcare market of wearable devices has been growing significantly in recent years and is predicted to reach $60 billion by 2028, many important healthcare applications such as seizure monitoring, drowsiness detection, etc. have not been deployed due to the limited battery lifetime, slow response rate, and inadequate biosignal quality.This study proposes PROS, an efficient pattern-driven compressive sensing framework for low-power biopotential-based wearables. PROS eliminates the conventional trade-off between signal quality, response time, and power consumption by introducing tiny pattern recognition primitives and a pattern-driven compressive sensing technique that exploits the sparsity of biosignals. Specifically, we (i) develop tiny machine learning models to eliminate irrelevant biosignal patterns, (ii) efficiently perform compressive sampling of relevant biosignals with appropriate sparse wavelet domains, and (iii) optimize hardware and OS operations to push processing efficiency. PROS also provides an abstraction layer, so the application only needs to care about detected relevant biosignal patterns without knowing the optimizations underneath.We have implemented and evaluated PROS on two open biosignal datasets with 120 subjects and six biosignal patterns. The experimental results on unknown subjects of a practical use case such as epileptic seizure monitoring are very encouraging. PROS can reduce the streaming data rate by 24X while maintaining high fidelity signal. It boosts the power efficiency of the wearable device by more than 1200\% and enables the ability to react to critical events immediately on the device. The memory and runtime overheads of PROS are minimal, with a few KBs and 10s of milliseconds for each biosignal pattern, respectively. PROS is currently adopted in research projects in multiple universities and hospitals. 
    more » « less
  5. Li-Jessen, Nicole Yee-Key (Ed.)
    The Earable device is a behind-the-ear wearable originally developed to measure cognitive function. Since Earable measures electroencephalography (EEG), electromyography (EMG), and electrooculography (EOG), it may also have the potential to objectively quantify facial muscle and eye movement activities relevant in the assessment of neuromuscular disorders. As an initial step to developing a digital assessment in neuromuscular disorders, a pilot study was conducted to determine whether the Earable device could be utilized to objectively measure facial muscle and eye movements intended to be representative of Performance Outcome Assessments, (PerfOs) with tasks designed to model clinical PerfOs, referred to as mock-PerfO activities. The specific aims of this study were: To determine whether the Earable raw EMG, EOG, and EEG signals could be processed to extract features describing these waveforms; To determine Earable feature data quality, test re-test reliability, and statistical properties; To determine whether features derived from Earable could be used to determine the difference between various facial muscle and eye movement activities; and, To determine what features and feature types are important for mock-PerfO activity level classification. A total of N = 10 healthy volunteers participated in the study. Each study participant performed 16 mock-PerfOs activities, including talking, chewing, swallowing, eye closure, gazing in different directions, puffing cheeks, chewing an apple, and making various facial expressions. Each activity was repeated four times in the morning and four times at night. A total of 161 summary features were extracted from the EEG, EMG, and EOG bio-sensor data. Feature vectors were used as input to machine learning models to classify the mock-PerfO activities, and model performance was evaluated on a held-out test set. Additionally, a convolutional neural network (CNN) was used to classify low-level representations of the raw bio-sensor data for each task, and model performance was correspondingly evaluated and compared directly to feature classification performance. The model’s prediction accuracy on the Earable device’s classification ability was quantitatively assessed. Study results indicate that Earable can potentially quantify different aspects of facial and eye movements and may be used to differentiate mock-PerfO activities. Specially, Earable was found to differentiate talking, chewing, and swallowing tasks from other tasks with observed F1 scores >0.9. While EMG features contribute to classification accuracy for all tasks, EOG features are important for classifying gaze tasks. Finally, we found that analysis with summary features outperformed a CNN for activity classification. We believe Earable may be used to measure cranial muscle activity relevant for neuromuscular disorder assessment. Classification performance of mock-PerfO activities with summary features enables a strategy for detecting disease-specific signals relative to controls, as well as the monitoring of intra-subject treatment responses. Further testing is needed to evaluate the Earable device in clinical populations and clinical development settings. 
    more » « less
  6. Face touch is an unconscious human habit. Frequent touching of sensitive/mucosal facial zones (eyes, nose, and mouth) increases health risks by passing pathogens into the body and spreading diseases. Furthermore, accurate monitoring of face touch is critical for behavioral intervention. Existing monitoring systems only capture objects approaching the face, rather than detecting actual touches. As such, these systems are prone to false positives upon hand or object movement in proximity to one's face (e.g., picking up a phone). We present FaceSense, an ear-worn system capable of identifying actual touches and differentiating them between sensitive/mucosal areas from other facial areas. Following a multimodal approach, FaceSense integrates low-resolution thermal images and physiological signals. Thermal sensors sense the thermal infrared signal emitted by an approaching hand, while physiological sensors monitor impedance changes caused by skin deformation during a touch. Processed thermal and physiological signals are fed into a deep learning model (TouchNet) to detect touches and identify the facial zone of the touch. We fabricated prototypes using off-the-shelf hardware and conducted experiments with 14 participants while they perform various daily activities (e.g., drinking, talking). Results show a macro-F1-score of 83.4% for touch detection with leave-one-user-out cross-validation and a macro-F1-score of 90.1% for touch zone identification with a personalized model. 
    more » « less
  7. Frequent blood pressure monitoring is the key to diagnosis and treatments of many severe diseases. However, the conventional ambulatory methods require patients to carry a blood pressure (BP) monitoring device for 24 h and conduct the measurement every 10--15 min. Despite their extensive usage, wearing the wrist/arm-based BP monitoring device for a long time has a significant impact on users' daily activities. To address the problem, we developed eBP to measure blood pressure (BP) from inside user's ear aiming to minimize the measurement's impact on users' normal activities although maximizing its comfort level. The key novelty of eBP includes (1) a light-based inflatable pulse sensor which goes inside the ear, (2) a digital air pump with a fine controller, and (3) BP estimation algorithms that eliminate the need of blocking the blood flow inside the ear. Through the comparative study of 35 subjects, eBP can achieve the average error of 1.8 mmHg for systolic (high-pressure value) and -3.1 mmHg for diastolic (low-pressure value) with the standard deviation error of 7.2 mmHg and 7.9 mmHg, respectively. These results satisfy the FDA's AAMI standard, which requires a mean error of less than 5 mmHg and a standard deviation of less than 8 mmHg. 
    more » « less
  8. Diagnosing hypertension or hemodialysis requires patients to carry a blood pressure (BP) monitoring device for 24 hours. Th erefore, wearing the wrist/arm-based BP monitoring device, in this case, has a signifi cant impact on users' daily activities. To address the problem, we developed eBP, an ear-worn device that measures blood pressure from inside the ear. Th rough the evaluation of 35 subjects, eBP can achieve the average error of 1.8 mmHg for systolic BP and -3.1 mmHg for diastolic BP with the standard deviation error of 7.2 mmHg and 7.9 mmHg, respectively. 
    more » « less