AI-assisted decision-making systems hold immense potential to enhance human judgment, but their effectiveness is often hindered by a lack of understanding of the diverse ways in which humans take AI recommendations. Current research frequently relies on simplified, ``one-size-fits-all'' models to characterize an average human decision-maker, thus failing to capture the heterogeneity of people's decision-making behavior when incorporating AI assistance. To address this, we propose Mix and Match (M&M), a novel computational framework that explicitly models the diversity of human decision-makers and their unique patterns of relying on AI assistance. M&M represents the population of decision-makers as a mixture of distinct decision-making processes, with each process corresponding to a specific type of decision-maker. This approach enables us to infer latent behavioral patterns from limited data of human decisions under AI assistance, offering valuable insights into the cognitive processes underlying human-AI collaboration. Using real-world behavioral data, our empirical evaluation demonstrates that M&M consistently outperforms baseline methods in predicting human decision behavior. Furthermore, through a detailed analysis of the decision-maker types identified in our framework, we provide quantitative insights into nuanced patterns of how different individuals adopt AI recommendations. These findings offer implications for designing personalized and effective AI systems based on the diverse landscape of human behavior patterns in AI-assisted decision-making across various domains. 
                        more » 
                        « less   
                    
                            
                            Improving Human-AI Collaboration With Descriptions of AI Behavior
                        
                    
    
            People work with AI systems to improve their decision making, but often under- or over-rely on AI predictions and perform worse than they would have unassisted. To help people appropriately rely on AI aids, we propose showing them behavior descriptions, details of how AI systems perform on subgroups of instances. We tested the efficacy of behavior descriptions through user studies with 225 participants in three distinct domains: fake review detection, satellite image classification, and bird classification. We found that behavior descriptions can increase human-AI accuracy through two mechanisms: helping people identify AI failures and increasing people's reliance on the AI when it is more accurate. These findings highlight the importance of people's mental models in human-AI collaboration and show that informing people of high-level AI behaviors can significantly improve AI-assisted decision making. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2040942
- PAR ID:
- 10602196
- Publisher / Repository:
- Association for Computing Machinery (ACM)
- Date Published:
- Journal Name:
- Proceedings of the ACM on Human-Computer Interaction
- Volume:
- 7
- Issue:
- CSCW1
- ISSN:
- 2573-0142
- Format(s):
- Medium: X Size: p. 1-21
- Size(s):
- p. 1-21
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            With the rapid development of decision aids that are driven by AI models, the practice of AI-assisted decision making has become increasingly prevalent. To improve the human-AI team performance in decision making, earlier studies mostly focus on enhancing humans' capability in better utilizing a given AI-driven decision aid. In this paper, we tackle this challenge through a complementary approach—we aim to train behavior-aware AI by adjusting the AI model underlying the decision aid to account for humans' behavior in adopting AI advice. In particular, as humans are observed to accept AI advice more when their confidence in their own judgement is low, we propose to train AI models with a human-confidence-based instance weighting strategy, instead of solving the standard empirical risk minimization problem. Under an assumed, threshold-based model characterizing when humans will adopt the AI advice, we first derive the optimal instance weighting strategy for training AI models. We then validate the efficacy and robustness of our proposed method in improving the human-AI joint decision making performance through systematic experimentation on synthetic datasets. Finally, via randomized experiments with real human subjects along with their actual behavior in adopting the AI advice, we demonstrate that our method can significantly improve the decision making performance of the human-AI team in practice.more » « less
- 
            AI assistance in decision-making has become popular, yet people's inappropriate reliance on AI often leads to unsatisfactory human-AI collaboration performance. In this paper, through three pre-registered, randomized human subject experiments, we explore whether and how the provision of second opinions may affect decision-makers' behavior and performance in AI-assisted decision-making. We find that if both the AI model's decision recommendation and a second opinion are always presented together, decision-makers reduce their over-reliance on AI while increase their under-reliance on AI, regardless whether the second opinion is generated by a peer or another AI model. However, if decision-makers have the control to decide when to solicit a peer's second opinion, we find that their active solicitations of second opinions have the potential to mitigate over-reliance on AI without inducing increased under-reliance in some cases. We conclude by discussing the implications of our findings for promoting effective human-AI collaborations in decision-making.more » « less
- 
            Recent advances in AI models have increased the integration of AI-based decision aids into the human decision making process. To fully unlock the potential of AI- assisted decision making, researchers have computationally modeled how humans incorporate AI recommendations into their final decisions, and utilized these models to improve human-AI team performance. Meanwhile, due to the “black-box” nature of AI models, providing AI explanations to human decision makers to help them rely on AI recommendations more appropriately has become a common practice. In this paper, we explore whether we can quantitatively model how humans integrate both AI recommendations and explanations into their decision process, and whether this quantitative understanding of human behavior from the learned model can be utilized to manipulate AI explanations, thereby nudging individuals towards making targeted decisions. Our extensive human experiments across various tasks demonstrate that human behavior can be easily influenced by these manipulated explanations towards targeted outcomes, regardless of the intent being adversarial or benign. Furthermore, individuals often fail to detect any anomalies in these explanations, despite their decisions being affected by them.more » « less
- 
            Recent advances in AI models have increased the integration of AI-based decision aids into the human decision making process. To fully unlock the potential of AI-assisted decision making, researchers have computationally modeled how humans incorporate AI recommendations into their final decisions, and utilized these models to improve human-AI team performance. Meanwhile, due to the black-box'' nature of AI models, providing AI explanations to human decision makers to help them rely on AI recommendations more appropriately has become a common practice. In this paper, we explore whether we can quantitatively model how humans integrate both AI recommendations and explanations into their decision process, and whether this quantitative understanding of human behavior from the learned model can be utilized to manipulate AI explanations, thereby nudging individuals towards making targeted decisions. Our extensive human experiments across various tasks demonstrate that human behavior can be easily influenced by these manipulated explanations towards targeted outcomes, regardless of the intent being adversarial or benign. Furthermore, individuals often fail to detect any anomalies in these explanations, despite their decisions being affected by them.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
