skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Robustness and Consistency in Linear Quadratic Control with Untrusted Predictions
We study the problem of learning-augmented predictive linear quadratic control. Our goal is to design a controller that balances consistency, which measures the competitive ratio when predictions are accurate, and robustness, which bounds the competitive ratio when predictions are inaccurate.  more » « less
Award ID(s):
2105648 2146814 1932611
PAR ID:
10602217
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Association for Computing Machinery (ACM)
Date Published:
Journal Name:
Proceedings of the ACM on Measurement and Analysis of Computing Systems
Volume:
6
Issue:
1
ISSN:
2476-1249
Format(s):
Medium: X Size: p. 1-35
Size(s):
p. 1-35
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper leverages machine-learned predictions to design competitive algorithms for online conversion problems with the goal of improving the competitive ratio when predictions are accurate (i.e., consistency), while also guaranteeing a worst-case competitive ratio regardless of the prediction quality (i.e., robustness). We unify the algorithmic design of both integral and fractional conversion problems, which are also known as the 1-max-search and one-way trading problems, into a class of online threshold-based algorithms (OTA). By incorporating predictions into design of OTA, we achieve the Pareto-optimal trade-off of consistency and robustness, i.e., no online algorithm can achieve a better consistency guarantee given for a robustness guarantee. We demonstrate the performance of OTA using numerical experiments on Bitcoin conversion. 
    more » « less
  2. An important goal of modern scheduling systems is to efficiently manage power usage. In energy-efficient scheduling, the operating system controls the speed at which a machine is processing jobs with the dual objective of minimizing energy consumption and optimizing the quality of service cost of the resulting schedule. Since machine-learned predictions about future requests can often be learned from historical data, a recent line of work on learning-augmented algorithms aims to achieve improved performance guarantees by leveraging predictions. In particular, for energy-efficient scheduling, Bamas et. al. [NeurIPS '20] and Antoniadis et. al. [SWAT '22] designed algorithms with predictions for the energy minimization with deadlines problem and achieved an improved competitive ratio when the prediction error is small while also maintaining worst-case bounds even when the prediction error is arbitrarily large. In this paper, we consider a general setting for energy-efficient scheduling and provide a flexible learning-augmented algorithmic framework that takes as input an offline and an online algorithm for the desired energy-efficient scheduling problem. We show that, when the prediction error is small, this framework gives improved competitive ratios for many different energy-efficient scheduling problems, including energy minimization with deadlines, while also maintaining a bounded competitive ratio regardless of the prediction error. Finally, we empirically demonstrate that this framework achieves an improved performance on real and synthetic datasets. 
    more » « less
  3. Modern data centers suffer from immense power consumption. As a result, data center operators have heavily invested in capacity-scaling solutions, which dynamically deactivate servers if the demand is low and activate them again when the workload increases. We analyze a continuous-time model for capacity scaling, where the goal is to minimize the weighted sum of flow time, switching cost, and power consumption in an online fashion. We propose a novel algorithm, called adaptive balanced capacity scaling (ABCS), that has access to black-box machine learning predictions. ABCS aims to adapt to the predictions and is also robust against unpredictable surges in the workload. In particular, we prove that ABCS is [Formula: see text] competitive if the predictions are accurate, and yet, it has a uniformly bounded competitive ratio even if the predictions are completely inaccurate. Finally, we investigate the performance of this algorithm on a real-world data set and carry out extensive numerical experiments, which positively support the theoretical results. Funding: This work was partially supported by the Division of Computing and Communication Foundations [Grant 2113027]. The authors also acknowledge financial support for this project from the Algorithm and Randomness Center–Transdisciplinary Research Institute for Advancing Data Science Fellowship at Georgia Tech. 
    more » « less
  4. null (Ed.)
    There has been significant interest in leveraging limited look-ahead to achieve low competitive ratios for online convex optimization (OCO). However, existing online algorithms (such as Averaging Fixed Horizon Control (AFHC)) that can leverage look-ahead to reduce the competitive ratios still produce competitive ratios that grow unbounded as the coefficient ratio (i.e., the maximum ratio of the switching-cost coefficient and the service-cost coefficient) increases. On the other hand, the regularization method can attain a competitive ratio that remains bounded when the coefficient ratio is large, but it does not benefit from look-ahead. In this paper, we propose a new algorithm, called Regularization with Look-Ahead (RLA), that can get the best of both AFHC and the regularization method, i.e., its competitive ratio decreases with the look-ahead window size when the coefficient ratio is small, and remains bounded when the coefficient ratio is large. We also provide a matching lower bound for the competitive ratios of all online algorithms with look-ahead, which differs from the achievable competitive ratio of RLA by a factor that only depends on the problem size. The competitive analysis of RLA involves a non-trivial generalization of online primal-dual analysis to the case with look-ahead. 
    more » « less
  5. This paper studies online resource allocation with replenishable budgets, where budgets can be replenished on top of the initial budget and an agent sequentially chooses online allocation decisions without violating the available budget constraint at each round. We propose a novel online algorithm, called OACP (Opportunistic Allocation with Conservative Pricing), that conservatively adjusts dual variables while opportunistically utilizing available resources. OACP achieves a bounded asymptotic competitive ratio in adversarial settings as the number of decision rounds T gets large. Importantly, the asymptotic competitive ratio of OACP is optimal in the absence of additional assumptions on budget replenishment. To further improve the competitive ratio, we make a mild assumption that there is budget replenishment every T* ≥ 1 decision rounds and propose OACP+ to dynamically adjust the total budget assignment for online allocation. Next, we move beyond the worst-case and propose LA-OACP (Learning-Augmented OACP/OACP+), a novel learning-augmented algorithm for online allocation with replenishable budgets. We prove that LA-OACP can improve the average utility compared to OACP/OACP+ when the ML predictor is properly trained, while still offering worst-case utility guarantees when the ML predictions are arbitrarily wrong. Finally, we run simulation studies of sustainable AI inference powered by renewables, validating our analysis and demonstrating the empirical benefits of LA-OACP. 
    more » « less