skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2146814

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We introduce and study spatiotemporal online allocation with deadline constraints (SOAD), a new online problem motivated by emerging challenges in sustainability and energy. In SOAD, an online player completes a workload by allocating and scheduling it on the points of a metric space (X,d) while subject to a deadlineT. At each time step, a service cost function is revealed that represents the cost of servicing the workload at each point, and the player must irrevocably decide the current allocation of work to points. Whenever the player moves this allocation, they incur a movement cost defined by the distance metricd(⋅, ⋅) that captures, e.g., an overhead cost. SOAD formalizes the open problem of combining general metrics and deadline constraints in the online algorithms literature, unifying problems such as metrical task systems and online search. We propose a competitive algorithm for SOAD along with a matching lower bound establishing its optimality. Our main algorithm, ST-CLIP, is a learning-augmented algorithm that takes advantage of predictions (e.g., forecasts of relevant costs) and achieves an optimal consistency-robustness trade-off. We evaluate our proposed algorithms in a simulated case study of carbon-aware spatiotemporal workload management, an application in sustainable computing that schedules a delay-tolerant batch compute job on a distributed network of data centers. In these experiments, we show that ST-CLIP substantially improves on heuristic baseline methods. 
    more » « less
    Free, publicly-accessible full text available March 6, 2026
  2. This paper studies learning-augmented decentralized online convex optimization in a networked multi-agent system, a challenging setting that has remained under-explored. We first consider a linear learning-augmented decentralized online algorithm (LADO-Lin) that combines a machine learning (ML) policy with a baseline expert policy in a linear manner. We show that, while LADO-Lin can exploit the potential of ML predictions to improve the average cost performance, it cannot have guaranteed worst-case performance. To address this limitation, we propose a novel online algorithm (LADO) that adaptively combines the ML policy and expert policy to safeguard the ML predictions to achieve strong competitiveness guarantees. We also prove the average cost bound for LADO, revealing the tradeoff between average performance and worst-case robustness and demonstrating the advantage of training the ML policy by explicitly considering the robustness requirement. Finally, we run an experiment on decentralized battery management. Our results highlight the potential of ML augmentation to improve the average performance as well as the guaranteed worst-case performance of LADO. 
    more » « less
    Free, publicly-accessible full text available December 10, 2025
  3. We introduce and study the online pause and resume problem. In this problem, a player attempts to find the k lowest (alternatively, highest) prices in a sequence of fixed length T, which is revealed sequentially. At each time step, the player is presented with a price and decides whether to accept or reject it. The player incurs aswitching cost whenever their decision changes in consecutive time steps, i.e., whenever they pause or resume purchasing. This online problem is motivated by the goal of carbon-aware load shifting, where a workload may be paused during periods of high carbon intensity and resumed during periods of low carbon intensity and incurs a cost when saving or restoring its state. It has strong connections to existing problems studied in the literature on online optimization, though it introduces unique technical challenges that prevent the direct application of existing algorithms. Extending prior work on threshold-based algorithms, we introducedouble-threshold algorithms for both the minimization and maximization variants of this problem. We further show that the competitive ratios achieved by these algorithms are the best achievable by any deterministic online algorithm. Finally, we empirically validate our proposed algorithm through case studies on the application of carbon-aware load shifting using real carbon trace data and existing baseline algorithms. 
    more » « less