skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Linear types for large-scale systems verification
Reasoning about memory aliasing and mutation in software verification is a hard problem. This is especially true for systems using SMT-based automated theorem provers. Memory reasoning in SMT verification typically requires a nontrivial amount of manual effort to specify heap invariants, as well as extensive alias reasoning from the SMT solver. In this paper, we present a hybrid approach that combines linear types with SMT-based verification for memory reasoning. We integrate linear types into Dafny, a verification language with an SMT backend, and show that the two approaches complement each other. By separating memory reasoning from verification conditions, linear types reduce the SMT solving time. At the same time, the expressiveness of SMT queries extends the flexibility of the linear type system. In particular, it allows our linear type system to easily and correctly mix linear and nonlinear data in novel ways, encapsulating linear data inside nonlinear data and vice-versa. We formalize the core of our extensions, prove soundness, and provide algorithms for linear type checking. We evaluate our approach by converting the implementation of a verified storage system (about 24K lines of code and proof) written in Dafny, to use our extended Dafny. The resulting system uses linear types for 91% of the code and SMT-based heap reasoning for the remaining 9%. We show that the converted system has 28% fewer lines of proofs and 30% shorter verification time overall. We discuss the development overhead in the original system due to SMT-based heap reasoning and highlight the improved developer experience when using linear types.  more » « less
Award ID(s):
1700521
PAR ID:
10602265
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Association for Computing Machinery (ACM)
Date Published:
Journal Name:
Proceedings of the ACM on Programming Languages
Volume:
6
Issue:
OOPSLA1
ISSN:
2475-1421
Format(s):
Medium: X Size: p. 1-28
Size(s):
p. 1-28
Sponsoring Org:
National Science Foundation
More Like this
  1. RedLeaf is a new operating system being developed from scratch to utilize formal verification for implementing provably secure firmware. RedLeaf is developed in a safe language, Rust, and relies on automated reasoning using satisfiability modulo theories (SMT) solvers for formal verification. RedLeaf builds on two premises: (1) Rust's linear type system enables practical language safety even for systems with tightest performance and resource budgets (e.g., firmware), and (2) a combination of SMT-based reasoning and pointer discipline enforced by linear types provides a unique way to automate and simplify verification effort scaling it to the size of a small OS kernel. 
    more » « less
  2. null (Ed.)
    To verify distributed systems, prior work introduced a methodology for verifying both the code running on individual machines and the correctness of the overall system when those machines interact via an asynchronous distributed environment. The methodology requires neither domain-specific logic nor tooling. However, distributed systems are only one instance of the more general phenomenon of systems code that interacts with an asynchronous environment. We argue that the software of a storage system can (and should!) be viewed similarly. We evaluate this approach in VeriSafeKV, a key-value store based on a state-of-the-art B^ε-tree. In building VeriSafeKV, we introduce new techniques to scale automated verification to larger code bases, still without introducing domain-specific logic or tooling. In particular, we show a discipline that keeps the automated verification development cycle responsive. We also combine linear types with dynamic frames to relieve the programmer from most heap-reasoning obligations while enabling them to break out of the linear type system when needed. VeriSafeKV exhibits similar query performance to unverified databases. Its insertion performance is 15× faster than unverified BerkeleyDB and 6× slower than RocksDB. 
    more » « less
  3. Commutativity of program code (the equivalence of two code fragments composed in alternate orders) is of ongoing interest in many settings such as program verification, scalable concurrency, and security analysis. While some recent works have explored static analysis for code commutativity, few have specifically catered to heap-manipulating programs. We introduce an abstract domain in which commutativity synthesis or verification techniques can safely be performed on abstract mathematical models and, from those results, one can directly obtain commutativity conditions for concrete heap programs. This approach offloads challenges of concrete heap reasoning into the simpler abstract space. We show this reasoning supports framing and composition, and conclude with commutativity analysis of programs operating on example heap data structures. Our work has been mechanized in Coq and is available in the supplement. 
    more » « less
  4. Abstract Memory safety is a fundamental correctness property of software. For programs that manipulate linked, heap-allocated data structures, ensuring memory safety requires analyzing their possible shapes. Despite significant advances in shape analysis, existing techniques rely on hand-crafted domains tailored to specific data structures, making them difficult to generalize and extend. This paper presents a novel approach that reduces memory-safety proofs to the verification of heap-less imperative programs, enabling the use of off-the-shelf software verification tools. We achieve this reduction through two complementary program instrumentation techniques: space invariants, which enable symbolic reasoning about unbounded heaps, and flow abstraction, which encodes global heap properties as local flow equations. The approach effectively verifies memory safety across a broad range of programs, including concurrent lists and trees that lie beyond the reach of existing shape analysis tools. 
    more » « less
  5. This paper proposes a new type system for concurrent programs, allowing threads to exchange complex object graphs without risking destructive data races. While this goal is shared by a rich history of past work, existing solutions either rely on strictly enforced heap invariants that prohibit natural programming patterns or demand pervasive annotations even for simple programming tasks. As a result, past systems cannot express intuitively simple code without unnatural rewrites or substantial annotation burdens. Our work avoids these pitfalls through a novel type system that provides sound reasoning about separation in the heap while remaining flexible enough to support a wide range of desirable heap manipulations. This new sweet spot is attained by enforcing a heap domination invariant similarly to prior work, but tempering it by allowing complex exceptions that add little annotation burden. Our results include: (1) code examples showing that common data structure manipulations which are difficult or impossible to express in prior work are natural and direct in our system, (2) a formal proof of correctness demonstrating that well-typed programs cannot encounter destructive data races at run time, and (3) an efficient type checker implemented in Gallina and OCaml. 
    more » « less