skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Higher-order probabilistic adversarial computations: categorical semantics and program logics
Adversarial computations are a widely studied class of computations where resource-bounded probabilistic adversaries have access to oracles, i.e., probabilistic procedures with private state. These computations arise routinely in several domains, including security, privacy and machine learning. In this paper, we develop program logics for reasoning about adversarial computations in a higher-order setting. Our logics are built on top of a simply typed λ-calculus extended with a graded monad for probabilities and state. The grading is used to model and restrict the memory footprint and the cost (in terms of oracle calls) of computations. Under this view, an adversary is a higher-order expression that expects as arguments the code of its oracles. We develop unary program logics for reasoning about error probabilities and expected values, and a relational logic for reasoning about coupling-based properties. All logics feature rules for adversarial computations, and yield guarantees that are valid for all adversaries that satisfy a fixed resource policy. We prove the soundness of the logics in the category of quasi-Borel spaces, using a general notion of graded predicate liftings, and we use logical relations over graded predicate liftings to establish the soundness of proof rules for adversaries. We illustrate the working of our logics with simple but illustrative examples.  more » « less
Award ID(s):
2040222 1718220
PAR ID:
10602356
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Association for Computing Machinery (ACM)
Date Published:
Journal Name:
Proceedings of the ACM on Programming Languages
Volume:
5
Issue:
ICFP
ISSN:
2475-1421
Format(s):
Medium: X Size: p. 1-30
Size(s):
p. 1-30
Sponsoring Org:
National Science Foundation
More Like this
  1. We present Bluebell, a program logic for reasoning about probabilistic programs where unary and relational styles of reasoning come together to create new reasoning tools. Unary-style reasoning is very expressive and is powered by foundational mechanisms to reason about probabilistic behavior likeindependenceandconditioning. The relational style of reasoning, on the other hand, naturally shines when the properties of interestcomparethe behavior of similar programs (e.g. when proving differential privacy) managing to avoid having to characterize the output distributions of the individual programs. So far, the two styles of reasoning have largely remained separate in the many program logics designed for the deductive verification of probabilistic programs. In Bluebell, we unify these styles of reasoning through the introduction of a new modality called “joint conditioning” that can encode and illuminate the rich interaction betweenconditional independenceandrelational liftings; the two powerhouses from the two styles of reasoning. 
    more » « less
  2. Properties such as provable security and correctness for randomized programs are naturally expressed relationally as approximate equivalences. As a result, a number of relational program logics have been developed to reason about such approximate equivalences of probabilistic programs. However, existing approximate relational logics are mostly restricted to first-order programs without general state. In this paper we develop Approxis, a higher-order approximate relational separation logic for reasoning about approximate equivalence of programs written in an expressive ML-like language with discrete probabilistic sampling, higher-order functions, and higher-order state. The Approxis logic recasts the concept of error credits in the relational setting to reason about relational approximation, which allows for expressive notions of modularity and composition, a range of new approximate relational rules, and an internalization of a standard limiting argument for showing exact probabilistic equivalences by approximation. We also use Approxis to develop a logical relation model that quantifies over error credits, which can be used to prove exact contextual equivalence. We demonstrate the flexibility of our approach on a range of examples, including the PRP/PRF switching lemma, IND$-CPA security of an encryption scheme, and a collection of rejection samplers. All of the results have been mechanized in the Coq proof assistant and the Iris separation logic framework. 
    more » « less
  3. Probabilistic couplings are the foundation for many probabilistic relational program logics and arise when relating random sampling statements across two programs. In relational program logics, this manifests as dedicated coupling rules that, e.g., say we may reason as if two sampling statements return the same value. However, this approach fundamentally requires aligning or synchronizing the sampling statements of the two programs which is not always possible. In this paper, we develop Clutch, a higher-order probabilistic relational separation logic that addresses this issue by supporting asynchronous probabilistic couplings. We use Clutch to develop a logical step-indexed logical relation to reason about contextual refinement and equivalence of higher-order programs written in a rich language with a probabilistic choice operator, higher-order local state, and impredicative polymorphism. Finally, we demonstrate our approach on a number of case studies. All the results that appear in the paper have been formalized in the Coq proof assistant using the Coquelicot library and the Iris separation logic framework. 
    more » « less
  4. Almost-sure termination is an important correctness property for probabilistic programs, and a number of program logics have been developed for establishing it. However, these logics have mostly been developed for first-order programs written in languages with specific syntactic patterns for looping. In this paper, we consider almost-sure termination for higher-order probabilistic programs with general references. This combination of features allows for recursion and looping to be encoded through a variety of patterns. Therefore, rather than developing proof rules for reasoning about particular recursion patterns, we instead propose an approach based on proving refinement between a higher-order program and a simpler probabilistic model, in such a way that the refinement preserves termination behavior. By proving a refinement, almost-sure termination behavior of the program can then be established by analyzing the simpler model. We present this approach in the form of Caliper, a higher-order separation logic for proving termination-preserving refinements. Caliper uses probabilistic couplings to carry out relational reasoning between a program and a model. To handle the range of recursion patterns found in higher-order programs, Caliper uses guarded recursion, in particular the principle of Löb induction. A technical novelty is that Caliper does not require the use of transfinite step indexing or other technical restrictions found in prior work on guarded recursion for termination-preservation refinement. We demonstrate the flexibility of this approach by proving almost-sure termination of several examples, including first-order loop constructs, a random list generator, treaps, and a sampler for Galton-Watson trees that uses higher-order store. All the results have been mechanized in the Coq proof assistant. 
    more » « less
  5. Graded Type Theory provides a mechanism to track and reason about resource usage in type systems. In this paper, we develop GraD, a novel version of such a graded dependent type system that includes functions, tensor products, additive sums, and a unit type. Since standard operational semantics is resource-agnostic, we develop a heap-based operational semantics and prove a soundness theorem that shows correct accounting of resource usage. Several useful properties, including the standard type soundness theorem, non-interference of irrelevant resources in computation and single pointer property for linear resources, can be derived from this theorem. We hope that our work will provide a base for integrating linearity, irrelevance and dependent types in practical programming languages like Haskell. 
    more » « less