Mixed-typed languages enable programmers to link typed and untyped components in various ways. Some offer rich type systems to facilitate the smooth migration of untyped code to the typed world; others merely provide a convenient form of type Dynamic together with a conventional structural type system. Orthogonal to this dimension, Natural systems ensure the integrity of types with a sophisticated contract system, while Transient systems insert simple first-order checks at strategic places within typed code. Furthermore, each method of ensuring type integrity comes with its own blame-assignment strategy. Typed Racket has a rich migratory type system and enforces the types with a Natural semantics. Reticulated Python has a simple structural type system extended with Dynamic and enforces types with a Transient semantics. While Typed Racket satisfies the most stringent gradual-type soundness properties at a significant performance cost, Reticulated Python seems to limit the performance penalty to a tolerable degree and is nevertheless type sound. This comparison raises the question of whether Transient checking is applicable to and beneficial for a rich migratory type system. This paper reports on the surprising difficulties of adapting the Transient semantics of Reticulated Python to the rich migratory type system of Typed Racket. The resulting implementation, Shallow Typed Racket, is faster than the standard Deep Typed Racket but only when the Transient blame assignment strategy is disabled. For language designers, this report provides valuable hints on how to equip an existing compiler to support a Transient semantics. For theoreticians, the negative experience with Transient blame calls for a thorough investigation of this strategy.
more »
« less
How Profilers Can Help Navigate Type Migration
Sound migratory typing envisions a safe and smooth refactoring of untyped code bases to typed ones. However, the cost of enforcing safety with run-time checks is often prohibitively high, thus performance regressions are a likely occurrence. Additional types can often recover performance, but choosing the right components to type is difficult because of the exponential size of the migratory typing lattice. In principal though, migration could be guided by off-the-shelf profiling tools. To examine this hypothesis, this paper follows the rational programmer method and reports on the results of an experiment on tens of thousands of performance-debugging scenarios via seventeen strategies for turning profiler output into an actionable next step. The most effective strategy is the use of deep types to eliminate the most costly boundaries between typed and untyped components; this strategy succeeds in more than 50% of scenarios if two performance degradations are tolerable along the way.
more »
« less
- PAR ID:
- 10603016
- Publisher / Repository:
- Association for Computing Machinery (ACM)
- Date Published:
- Journal Name:
- Proceedings of the ACM on Programming Languages
- Volume:
- 7
- Issue:
- OOPSLA2
- ISSN:
- 2475-1421
- Format(s):
- Medium: X Size: p. 544-573
- Size(s):
- p. 544-573
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Chin, WN; Xu, Z (Ed.)Static typing and dynamic typing have respective strengths and weaknesses, and a language often commits to one typing discipline and inherits the qualities, good or bad. Gradual typing has been developed to reconcile these typing disciplines, allowing a single program to mix both static and dynamic typing. It protects soundness of typed regions with runtime checks when values flown into them do not have required static types. One issue with gradual typing is that such checks can incur significant performance overhead. Previous work on performance has focused on coarse-grained gradual typing where each module (file) has to be fully typed or untyped. In contrast, the performance of fine-grained gradual typing where each single parameter can be partially-typed (such as specifying the parameter as a list without giving element type) has not been investigated. Motivated by this situation, this paper systematically investigates performance of fine-grained gradual typing by studying the performance of more than 1 million programs. These programs are drawn from seven commonly-used benchmarks with different types for parameters: some parameters are untyped, some are statically typed, and others are partially statically typed. The paper observes many interesting phenomena that were previously unknown to the research community. They provide insights into future research directions of understanding, predicting, and optimizing gradual typing performance as well as migrating gradual programs towards more staticmore » « less
-
Gradually typed programming languages permit the incremental addition of static types to untyped programs. To remain sound, languages insert run-time checks at the boundaries between typed and untyped code. Unfortunately, performance studies have shown that the overhead of these checks can be disastrously high, calling into question the viability of sound gradual typing. In this paper, we show that by building on existing work on soft contract verification, we can reduce or eliminate this overhead. Our key insight is that while untyped code cannot be trusted by a gradual type system, there is no need to consider only the worst case when optimizing a gradually typed program. Instead, we statically analyze the untyped portions of a gradually typed program to prove that almost all of the dynamic checks implied by gradual type boundaries cannot fail, and can be eliminated at compile time. Our analysis is modular, and can be applied to any portion of a program. We evaluate this approach on a dozen existing gradually typed programs previously shown to have prohibitive performance overhead—with a median overhead of 2.5× and up to 80.6× in the worst case—and eliminate all overhead in most cases, suffering only 1.5× overhead in the worst case.more » « less
-
Gradual typing has emerged as a popular design point in programming languages, attracting significant interests from both academia and industry. Programmers in gradually typed languages are free to utilize static and dynamic typing as needed. To make such languages sound, runtime checks mediate the boundary of typed and untyped code. Unfortunately, such checks can incur significant runtime overhead on programs that heavily mix static and dynamic typing. To combat this overhead without necessitating changes to the underlying implementations of languages, we presentdiscriminative typing. Discriminative typing works by optimistically inferring types for functions and implementing an optimized version of the function based on this type. To preserve safety it also implements an un-optimized version of the function based purely on the provided annotations. With two versions of each function in hand, discriminative typing translates programs so that the optimized functions are called as frequently as possible while also preserving program behaviors. We have implemented discriminative typing in Reticulated Python and have evaluated its performance compared to guarded Reticulated Python. Our results show that discriminative typing improves the performance across 95% of tested programs, when compared to Reticulated, and achieves more than 4× speedup in more than 56% of these programs. We also compare its performance against a previous optimization approach and find that discriminative typing improved performance across 93% of tested programs, with 30% of these programs receiving speedups between 4 to 25 times. Finally, our evaluation shows that discriminative typing remarkably reduces the overhead of gradual typing on many mixed type configurations of programs. In addition, we have implemented discriminative typing in Grift and evaluated its performance. Our evaluation demonstrations that DT significantly improves performance of Grift.more » « less
-
Abstract Gradual typing allows programs to enjoy the benefits of both static typing and dynamic typing. While it is often desirable to migrate a program from more dynamically typed to more statically typed or vice versa, gradual typing itself does not provide a way to facilitate this migration. This places the burden on programmers who have to manually add or remove type annotations. Besides the general challenge of adding type annotations to dynamically typed code, there are subtle interactions between these annotations in gradually typed code that exacerbate the situation. For example, to migrate a program to be as static as possible, in general, all possible combinations of adding or removing type annotations from parameters must be tried out and compared. In this paper, we address this problem by developing migrational typing , which efficiently types all possible ways of replacing dynamic types with fully static types for a gradually typed program. The typing result supports automatically migrating a program to be as static as possible or introducing the least number of dynamic types necessary to remove a type error. The approach can be extended to support user-defined criteria about which annotations to modify. We have implemented migrational typing and evaluated it on large programs. The results show that migrational typing scales linearly with the size of the program and takes only 2–4 times longer than plain gradual typing.more » « less
An official website of the United States government
