This 3 hour course provides a detailed overview of grid-free Monte Carlo methods for solving partial differential equations (PDEs) based on the walk on spheres (WoS) algorithm, with a special emphasis on problems with high geometric complexity. PDEs are a basic building block of models and algorithms used throughout science, engineering and visual computing. Yet despite decades of research, conventional PDE solvers struggle to capture the immense geometric complexity of the natural world. A perennial challenge is spatial discretization: traditionally, one must partition the domain into a high-quality volumetric mesh—a process that can be brittle, memory intensive, and difficult to parallelize. WoS makes a radical departure from this approach, by reformulating the problem in terms of recursive integral equations that can be estimated using the Monte Carlo method, eliminating the need for spatial discretization. Since these equations strongly resemble those found in light transport theory, one can leverage deep knowledge from Monte Carlo rendering to develop new PDE solvers that share many of its advantages: no meshing, trivial parallelism, and the ability to evaluate the solution at any point without solving a global system of equations. The course is divided into two parts. Part I will cover the basics of using WoS to solve fundamental PDEs like the Poisson equation. Topics include formulating the solution as an integral equation, generating samples via recursive random walks, and employing accelerated distance and ray intersection queries to efficiently handle complex geometries. Participants will also gain experience setting up demo applications involving data interpolation, heat transfer, and geometric optimization using the open-source “Zombie” library, which implements various grid-free Monte Carlo PDE solvers. Part II will feature a mini-panel of academic and industry contributors covering advanced topics including variance reduction, differentiable and multi-physics simulation, and applications in industrial design and robust geometry processing.
more »
« less
Grid-free Monte Carlo for PDEs with spatially varying coefficients
Partial differential equations (PDEs) with spatially varying coefficients arise throughout science and engineering, modeling rich heterogeneous material behavior. Yet conventional PDE solvers struggle with the immense complexity found in nature, since they must first discretize the problem---leading to spatial aliasing, and global meshing/sampling that is costly and error-prone. We describe a method that approximates neither the domain geometry, the problem data, nor the solution space, providing the exact solution (in expectation) even for problems with extremely detailed geometry and intricate coefficients. Our main contribution is to extend thewalk on spheres (WoS)algorithm from constant- to variable-coefficient problems, by drawing on techniques from volumetric rendering. In particular, an approach inspired bynull-scatteringyields unbiased Monte Carlo estimators for a large class of 2nd order elliptic PDEs, which share many attractive features with Monte Carlo rendering: no meshing, trivial parallelism, and the ability to evaluate the solution at any point without solving a global system of equations.
more »
« less
- PAR ID:
- 10603116
- Publisher / Repository:
- Association for Computing Machinery (ACM)
- Date Published:
- Journal Name:
- ACM Transactions on Graphics
- Volume:
- 41
- Issue:
- 4
- ISSN:
- 0730-0301
- Format(s):
- Medium: X Size: p. 1-17
- Size(s):
- p. 1-17
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We consider the problem of solving partial differential equations (PDEs) in domains with complex microparticle geometry that is impractical, or intractable, to model explicitly. Drawing inspiration from volume rendering, we propose tackling this problem by treating the domain as a participating medium that models microparticle geometrystochastically, through aggregate statistical properties (e.g., particle density). We first introduce the problem setting of PDE simulation in participating media. We then specialize toexponential mediaand describe the properties that make them an attractive model of microparticle geometry for PDE simulation problems. We use these properties to develop two new algorithms,volumetric walk on spheresandvolumetric walk on stars, that generalize previous Monte Carlo algorithms to enable efficient and discretization-free simulation of linear elliptic PDEs (e.g., Laplace) in participating media. We demonstrate experimentally that our algorithms can solve Laplace boundary value problems with complex microparticle geometry more accurately and more efficiently than previous approaches, such as ensemble averaging and homogenization.more » « less
-
Grid-free Monte Carlo methods such aswalk on spherescan be used to solve elliptic partial differential equations without mesh generation or global solves. However, such methods independently estimate the solution at every point, and hence do not take advantage of the high spatial regularity of solutions to elliptic problems. We propose a fast caching strategy which first estimates solution values and derivatives at randomly sampled points along the boundary of the domain (or a local region of interest). These cached values then provide cheap, output-sensitive evaluation of the solution (or its gradient) at interior points, via a boundary integral formulation. Unlike classic boundary integral methods, our caching scheme introduces zero statistical bias and does not require a dense global solve. Moreover we can handle imperfect geometry (e.g., with self-intersections) and detailed boundary/source terms without repairing or resampling the boundary representation. Overall, our scheme is similar in spirit tovirtual point lightmethods from photorealistic rendering: it suppresses the typical salt-and-pepper noise characteristic of independent Monte Carlo estimates, while still retaining the many advantages of Monte Carlo solvers: progressive evaluation, trivial parallelization, geometric robustness,etc.We validate our approach using test problems from visual and geometric computing.more » « less
-
Grid-free Monte Carlo methods based on thewalk on spheres (WoS)algorithm solve fundamental partial differential equations (PDEs) like the Poisson equation without discretizing the problem domain or approximating functions in a finite basis. Such methods hence avoid aliasing in the solution, and evade the many challenges of mesh generation. Yet for problems with complex geometry, practical grid-free methods have been largely limited to basic Dirichlet boundary conditions. We introduce thewalk on stars (WoSt)algorithm, which solves linear elliptic PDEs with arbitrary mixed Neumann and Dirichlet boundary conditions. The key insight is that one can efficiently simulate reflecting Brownian motion (which models Neumann conditions) by replacing the balls used by WoS withstar-shapeddomains. We identify such domains via the closest point on the visibility silhouette, by simply augmenting a standard bounding volume hierarchy with normal information. Overall, WoSt is an easy modification of WoS, and retains the many attractive features of grid-free Monte Carlo methods such as progressive and view-dependent evaluation, trivial parallelization, and sublinear scaling to increasing geometric detail.more » « less
-
Numerous scientific and engineering applications require solutions to boundary value problems (BVPs) involving elliptic partial differential equations, such as the Laplace or Poisson equations, on geometrically intricate domains. We develop a Monte Carlo method for solving such BVPs with arbitrary first-order linear boundary conditions---Dirichlet, Neumann, and Robin. Our method directly generalizes thewalk on stars (WoSt)algorithm, which previously tackled only the first two types of boundary conditions, with a few simple modifications. Unlike conventional numerical methods, WoSt does not need finite element meshing or global solves. Similar to Monte Carlo rendering, it instead computes pointwise solution estimates by simulating random walks along star-shaped regions inside the BVP domain, using efficient ray-intersection and distance queries. To ensure WoSt producesbounded-varianceestimates in the presence of Robin boundary conditions, we show that it is sufficient to modify how WoSt selects the size of these star-shaped regions. Our generalized WoSt algorithm reduces estimation error by orders of magnitude relative to alternative grid-free methods such as thewalk on boundaryalgorithm. We also developbidirectionalandboundary value cachingstrategies to further reduce estimation error. Our algorithm is trivial to parallelize, scales sublinearly with increasing geometric detail, and enables progressive and view-dependent evaluation.more » « less
An official website of the United States government
