Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Fourier analysis is gaining popularity in image synthesis as a tool for the analysis of error in Monte Carlo (MC) integration. Still, existing tools are only able to analyse convergence under simplifying assumptions (such as randomized shifts) which are not applied in practice during rendering. We reformulate the expressions for bias and variance of sampling‐based integrators to unify non‐uniform sample distributions [importance sampling (IS)] as well as correlations between samples while respecting finite sampling domains. Our unified formulation hints at fundamental limitations of Fourier‐based tools in performing variance analysis for MC integration. At the same time, it reveals that, when combined with correlated sampling, IS can impact convergence rate by introducing or inhibiting discontinuities in the integrand. We demonstrate that the convergence of multiple importance sampling (MIS) is determined by the strategy which converges slowest and propose several simple approaches to overcome this limitation. We show that smoothing light boundaries (as commonly done in production to reduce variance) can improve (M)IS convergence (at a cost of introducing a small amount of bias) since it removesC0discontinuities within the integration domain. We also propose practical integrand‐ and sample‐mirroring approaches which cancel the impact of boundary discontinuities on the convergence rate of estimators.more » « less
-
Partial differential equations (PDEs) with spatially varying coefficients arise throughout science and engineering, modeling rich heterogeneous material behavior. Yet conventional PDE solvers struggle with the immense complexity found in nature, since they must first discretize the problem---leading to spatial aliasing, and global meshing/sampling that is costly and error-prone. We describe a method that approximates neither the domain geometry, the problem data, nor the solution space, providing the exact solution (in expectation) even for problems with extremely detailed geometry and intricate coefficients. Our main contribution is to extend thewalk on spheres (WoS)algorithm from constant- to variable-coefficient problems, by drawing on techniques from volumetric rendering. In particular, an approach inspired bynull-scatteringyields unbiased Monte Carlo estimators for a large class of 2nd order elliptic PDEs, which share many attractive features with Monte Carlo rendering: no meshing, trivial parallelism, and the ability to evaluate the solution at any point without solving a global system of equations.more » « less
-
We introduce a general framework for transforming biased estimators into unbiased and consistent estimators for the same quantity. We show how several existing unbiased and consistent estimation strategies in rendering are special cases of this framework, and are part of a broader debiasing principle. We provide a recipe for constructing estimators using our generalized framework and demonstrate its applicability by developing novel unbiased forms of transmittance estimation, photon mapping, and finite differences.more » « less
An official website of the United States government

Full Text Available