skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Parallel Strong Connectivity Based on Faster Reachability
Computing strongly connected components (SCC) is among the most fundamental problems in graph analytics. Given the large size of today's real-world graphs, parallel SCC implementation is increasingly important. SCC is challenging in the parallel setting and is particularly hard on large-diameter graphs. Many existing parallel SCC implementations can be even slower than Tarjan's sequential algorithm on large-diameter graphs. To tackle this challenge, we propose an efficient parallel SCC implementation using a new parallel reachability approach. Our solution is based on a novel idea referred to as vertical granularity control (VGC). It breaks the synchronization barriers to increase parallelism and hide scheduling overhead. To use VGC in our SCC algorithm, we also design an efficient data structure called the parallel hash bag. It uses parallel dynamic resizing to avoid redundant work in maintaining frontiers (vertices processed in a round). We implement the parallel SCC algorithm by Blelloch et al. (J. ACM, 2020) using our new parallel reachability approach. We compare our implementation to the state-of-the-art systems, including GBBS, iSpan, Multi-step, and our highly optimized Tarjan's (sequential) algorithm, on 18 graphs, including social, web, k-NN, and lattice graphs. On a machine with 96 cores, our implementation is the fastest on 16 out of 18 graphs. On average (geometric means) over all graphs, our SCC is 6.0× faster than the best previous parallel code (GBBS), 12.8× faster than Tarjan's sequential algorithms, and 2.7× faster than the best existing implementation on each graph. We believe that our techniques are of independent interest. We also apply our parallel hash bag and VGC scheme to other graph problems, including connectivity and least-element lists (LE-lists). Our implementations improve the performance of the state-of-the-art parallel implementations for these two problems.  more » « less
Award ID(s):
2227669 2238358 2103483
PAR ID:
10603354
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Association for Computing Machinery (ACM)
Date Published:
Journal Name:
Proceedings of the ACM on Management of Data
Volume:
1
Issue:
2
ISSN:
2836-6573
Format(s):
Medium: X Size: p. 1-29
Size(s):
p. 1-29
Sponsoring Org:
National Science Foundation
More Like this
  1. We present shared-memory parallel methods for Maximal Clique Enumeration (MCE) from a graph. MCE is a fundamental and well-studied graph analytics task, and is a widely used primitive for identifying dense structures in a graph. Due to its computationally intensive nature, parallel methods are imperative for dealing with large graphs. However, surprisingly, there do not yet exist scalable and parallel methods for MCE on a shared-memory parallel machine. In this work, we present efficient shared-memory parallel algorithms for MCE, with the following properties: (1) the parallel algorithms are provably work-efficient relative to a state-of-the-art sequential algorithm (2) the algorithms have a provably small parallel depth, showing that they can scale to a large number of processors, and (3) our implementations on a multicore machine shows a good speedup and scaling behavior with increasing number of cores, and are substantially faster than prior shared-memory parallel algorithms for MCE. 
    more » « less
  2. We present shared memory parallel algorithms for maximal biclique enumeration (MBE), the task of enumerating all complete dense subgraphs (maximal bicliques) from a bipartite graph, which is widely used in the analysis of social, biological, and transactional networks. Since MBE is computationally expensive, it is necessary to use parallel computing to scale to large graphs. Our parallel algorithm ParMBE efficiently uses the power of multiple cores that share memory. From a theoretical view, ParMBE is work-efficient with respect to a state-of-the-art sequential algorithm. Our experimental evaluation shows that ParMBE scales well up to 64 cores, and is significantly faster than current parallel algorithms. Since ParMBE was yielding a super-linear speedup compared to the sequential algorithm on which it was based (MineLMBC), we develop an improved sequential algorithm FMBE, through "sequentializing" ParMBE. 
    more » « less
  3. We design and implement parallel graph coloring algorithms on the GPU using two different abstractions—one data-centric (Gunrock), the other linear-algebra-based (GraphBLAS). We analyze the impact of variations of a baseline independent-set algorithm on quality and runtime. We study how optimizations such as hashing, avoiding atomics, and a max-min heuristic affect performance. Our Gunrock graph coloring implementation has a peak 2x speed-up, a geomean speed-up of 1.3x and produces 1.6x more colors over previous hardwired state-of-the-art implementations on real-world datasets. Our GraphBLAS implementation of Luby's algorithm produces 1.9x fewer colors than the previous state-of-the-art parallel implementation at the cost of 3x extra runtime, and 1.014x fewer colors than a greedy, sequential algorithm with a geomean speed-up of 2.6x. 
    more » « less
  4. We design and implement parallel graph coloring algorithms on the GPU using two different abstractions—one datacentric (Gunrock), the other linear-algebra-based (GraphBLAS). We analyze the impact of variations of a baseline independent-set algorithm on quality and runtime. We study how optimizations such as hashing, avoiding atomics, and a max-min heuristic affect performance. Our Gunrock graph coloring implementation has a peak 2x speed-up, a geomean speed-up of 1.3x and produces 1.6x more colors over previous hardwired state-of-theart implementations on real-world datasets. Our GraphBLAS implementation of Luby’s algorithm produces 1.9x fewer colors than the previous state-of-the-art parallel implementation at the cost of 3x extra runtime, and 1.014x fewer colors than a greedy, sequential algorithm with a geomean speed-up of 2.6x. 
    more » « less
  5. null (Ed.)
    There has been significant recent interest in parallel graph processing due to the need to quickly analyze the large graphs available today. Many graph codes have been designed for distributed memory or external memory. However, today even the largest publicly-available real-world graph (the Hyperlink Web graph with over 3.5 billion vertices and 128 billion edges) can fit in the memory of a single commodity multicore server. Nevertheless, most experimental work in the literature report results on much smaller graphs, and the ones for the Hyperlink graph use distributed or external memory. Therefore, it is natural to ask whether we can efficiently solve a broad class of graph problems on this graph in memory. This paper shows that theoretically-efficient parallel graph algorithms can scale to the largest publicly-available graphs using a single machine with a terabyte of RAM, processing them in minutes. We give implementations of theoretically-efficient parallel algorithms for 20 important graph problems. We also present the interfaces, optimizations, and graph processing techniques that we used in our implementations, which were crucial in enabling us to process these large graphs quickly. We show that the running times of our implementations outperform existing state-of-the-art implementations on the largest real-world graphs. For many of the problems that we consider, this is the first time they have been solved on graphs at this scale. We have made the implementations developed in this work publicly-available as the Graph Based Benchmark Suite (GBBS). 
    more » « less