Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            ABSTRACT Mite–plant defense mutualisms are among the most common defense mutualisms in the world—yet studies providing basic information on their prevalence in plant communities remain rare. Here, we systematically surveyed common woody plants in a North American deciduous forest for the presence of plant–mite mutualistic interactions. We scored 16 common woody species in a wooded natural area for the presence and number of mite domatia—small structures on the underside of plant leaves that are known to house mutualistic mites. We found that 80% of common woody species in the forest had mite domatia, the highest reported percentage of mite domatia in any survey conducted thus far. We paired our survey with a quantification of the number of mites found on each leaf and investigated the relationship between mite domatia and mite abundance within and across species. We found that plants with mite domatia had significantly more mites on their leaves than species that lacked mite domatia, and that plants with more domatia had more mites. Together, our study provides much needed systematic survey data on plant–mite mutualism prevalence in an important plant community and points to northern temperate forests as a promising system to study plant–mite mutualisms in high densities in the future.more » « less
- 
            The processes driving defense trait correlations may vary within and between species based on ecological or environmental contexts. However, most studies of plant defense theory fail to address this potential for shifts in trait correlations across scales. In this work, we tested for correlations between multiple defensive traits (secondary chemistry, carbon to nitrogen ratio, domatia, leaf toughness, trichomes, and pearl bodies) across a common garden of 21Vitisspecies and eighteen genotypes of the speciesVitis ripariato identify when and where patterns of defense trait evolution persist or break down across biological scales. Additionally, we asked whetherVitisdefense trait investment correlates with environmental variables as predicted by plant defense theory, using environmental metrics for eachVitisspecies andV. ripariagenotype from the GBIF and WorldClim databases. We tested for correlations between defense trait investment, herbivore palatability, and environmental variables using phylogenetically informed models. Beyond a few likely physiological exceptions, we observed a lack of significant correlations between defense traits at both intra‐ and interspecific scales, indicating that these traits evolve independently of each other inVitisrather than forming predictable defense syndromes. We did find that investment in carbon:nitrogen (at both scales) and pearl bodies increases with proximity to the equator, demonstrating support for plant defense theory's prediction of higher investment in defenses at more equatorial environments for some, but not all, defense traits. Overall, our results challenge commonly held hypotheses about plant defense evolution, namely the concept of syndromes, by demonstrating that strong correlations between defense traits are not the prevailing pattern both across and withinVitisspecies. Our work also provides the first comprehensive evaluation of the evolutionary divergence in approaches thatVitis, a genus with significant agricultural value, have evolved to defend themselves against herbivores.more » « lessFree, publicly-accessible full text available May 14, 2026
- 
            Mutualisms are mediated by adaptive traits of interacting organisms and play a central role in the ecology and evolution of species. Thousands of plant species possess tiny structures called “domatia” that house mites which protect plants from pests, yet these traits remain woefully understudied. Here, we release a worldwide database of species with mite domatia and provide an evaluation of the phylogenetic and geographic distribution of this mutualistic trait. With >2,500 additions based on digital herbarium scans and published reports, we increased the number of known species with domatia by 27% and, importantly, documented their absence in >4,000 species. We show that mite domatia likely evolved hundreds of times among flowering plants, occurring in an estimated ~10% of woody species representing over a quarter of all angiosperm families. Contrary to classic hypotheses about the evolutionary drivers of mutualism, we find that mite domatia evolved more frequently in temperate regions and in deciduous lineages; this pattern is concordant with a large-scale geographic transition from predominantly ant-based plant defense mutualisms in the tropics to mite-based defense mutualisms in temperate climates. Our data also reveal a pattern of evolutionary convergence in domatia morphology, with tuft-form domatia more likely to evolve in dry temperate habitats and pit domatia more likely to evolve in wet tropical environments. We have shown climate-associated drivers of mite domatia evolution, demonstrating their utility and power as an evolutionarily replicated system for the study of plant defense mutualisms.more » « lessFree, publicly-accessible full text available November 26, 2025
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
