skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 1, 2026

Title: Rule-mediated connectivity in social-ecological-technological systems: A comparative network analysis of reservoir operation rules in Coyote Valley Dam (United States) and Ameghino Dam (Argentina)
Award ID(s):
1913920
PAR ID:
10603922
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Journal of Environmental Management
Volume:
374
Issue:
C
ISSN:
0301-4797
Page Range / eLocation ID:
124009
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This article considers the agentic capacity of fish in dam removal decisions. Pairing new materialist explorations of agency with news media, policy documents, and interviews related to a suite of dam decisions in a New England, USA watershed, we identify the ways that river herring seem constrained through technocratic discourse to particular human-defined roles in dam removal discussions. We suggest, meanwhile, that existing human relationships with salmonids like brook trout might serve as a bridge for public stakeholders and restoration managers to recognise the agentic creativity of fish in dam removal and river restoration decisions. 
    more » « less
  2. While hydroelectric dams play a significant role in meeting the increasing energy demand worldwide, they pose a significant risk to riverine biodiversity and food security for millions of people that mainly depend upon floodplain fisheries. Dam structures could affect fish populations both directly and indirectly through loss of accessible spawning and rearing habitat, degradation of habitat quality (e.g., changes in temperature and discharge), and/or turbine injuries. However, our understandings of the impacts of dam life span and the initial fishery conditions on restoration time and hence the dynamic hydropower (energy)-fish (food) nexus remain limited. In this study, we explored the temporal energy-food tradeoffs associated with a hydroelectric dam located in the Penobscot River basin of the United States. We investigated the influence of dam life span, upstream passage rate, and downstream habitat area on the energy-food tradeoffs using a system dynamics model. Our results show that around 90% of fish biomass loss happen within 5 years of dam construction. Thereafter, fish decline slowly stabilizes and approaches the lowest value at around the 20th year after dam construction. Fish restoration period is highly sensitive even to a short period of blockage. The biomass of alewife spawners need 18 years to recover with only 1-year of blockage to the upstream critical habitats. Hydropower generation and loss of fish biomass present a two-segment linear relationship under changes in dam life span. When the dam life span is less than 5 years, generating 1 GWh energy cause around 0.04 million kg loss of fish biomass; otherwise, the loss of fish biomass is 0.02 million kg. The loss of fish biomass could be significantly decreased with minimal energy loss through increasing upstream passage rate and/or the size of downstream habitat area. 
    more » « less