skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 14, 2026

Title: Chapter 7: Education
AI has entered the public consciousness through generative AI’s impact on work—enhancing efficiency and automating tasks—but it has also driven innovation in education and personalized learning. Still, while AI promises benefits, it also poses risks—from hallucinating false outputs to reinforcing biases and diminishing critical thinking. With the AI education market expected to grow substantially, ethical concerns about the technology’s misuse—AI tools have already falsely accused marginalized students of cheating—are mounting, highlighting the need for responsible creation and deployment. Addressing these challenges requires both technical literacy and critical engagement with AI’s societal impact. Expanding AI expertise must begin in K–12 and higher education in order to ensure that students are prepared to be responsible users and developers. AI education cannot exist in isolation—it must align with broader computer science (CS) education efforts. This chapter examines the global state of AI and CS education, access disparities, and policies shaping AI’s role in learning. This chapter was a collaboration prepared by the Kapor Foundation, CSTA, PIT-UN and the AI Index. The Kapor Foundation works at the intersection of racial equity and technology to build equitable and inclusive computing education pathways, advance tech policies that mitigate harms and promote equitable opportunity, and deploy capital to support responsible, ethical, and equitable tech solutions. The CSTA is a global membership organization that unites, supports, and empowers educators to enhance the quality, accessibility, and inclusivity of computer science education. The Public Interest Technology University Network (PIT-UN) fosters collaboration between universities and colleges to build the PIT field and nurture a new generation of civic-minded technologists.  more » « less
Award ID(s):
2311746 2444214
PAR ID:
10603946
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Corporate Creator(s):
;
Editor(s):
Maslej, Nestor; Fattorini, Loredana; Perrault, Raymond; Gil, Yolanda; Parli, Vanessa; Kariuki, Njenga; Capstick, Emily; Reuel, Anka; Brynjolfsson, Erik; Etchemendy, John; Ligett, Katrina; Lyons, Terah; Manyika, James; Niebles, Juan Carlos; Shoham, Yoav; Wald, Russell; Walsh, Tobi; Hamrah, Armin; Santarlasci, Lapo; Betts_Lotufo, Juliamore »; Rome, Alexandra; Shi, Andrew; Oak, Sukrut« less
Publisher / Repository:
The AI Index 2025 Annual Report
Date Published:
Edition / Version:
8
Subject(s) / Keyword(s):
artificial intelligence research report education
Format(s):
Medium: X Size: 3MB Other: per
Size(s):
3MB
Sponsoring Org:
National Science Foundation
More Like this
  1. As generative AI technologies proliferate across higher education, many U.S. universities are still developing institutional policies to address their ethical, pedagogical, and accessibility implications. This posIT column critically examines AI policies and resources at 50 four year universities—one from each U.S. state—to assess alignment with the Association of Research Libraries’ (ARL) Guiding Principles for Artificial Intelligence. Through content analysis of LibGuides, AI taskforce membership, campus events, and public-facing policies, the study reveals widespread adoption of AI resources but a significant lack of clarity, consistency, and librarian involvement in policy development. While most institutions meet baseline criteria related to privacy, plagiarism, and algorithmic transparency, fewer address AI’s potential harms to marginalized communities or its impact on accessibility for students with disabilities. Notably, fewer than half of the AI taskforces surveyed included library staff, despite librarians’ expertise in digital literacy and ethical information use. This column urges academic librarians to actively seek leadership roles in institutional AI governance to help shape inclusive, responsible, and human-centered AI policy frameworks. 
    more » « less
  2. Abstract As generative artificial intelligence (AI) becomes increasingly integrated into society and education, more institutions are implementing AI usage policies and offering introductory AI courses. These courses, however, should not replicate the technical focus typically found in introductory computer science (CS) courses like CS1 and CS2. In this paper, we use an adjustable, interdisciplinary socio‐technical AI literacy framework to design and present an introductory AI literacy course. We present a refined version of this framework informed by the teaching of a 1‐credit general education AI literacy course (primarily for freshmen and first‐year students from various majors), a 3‐credit course for CS majors at all levels, and a summer camp for high school students. Drawing from these teaching experiences and the evolving research landscape, we propose an introductory AI literacy course design framework structured around four cross‐cutting pillars. These pillars encompass (1) understanding the scope and technical dimensions of AI technologies, (2) learning how to interact with (generative) AI technologies, (3) applying principles of critical, ethical, and responsible AI usage, and (4) analyzing implications of AI on society. We posit that achieving AI literacy is essential for all students, those pursuing AI‐related careers, and those following other educational or professional paths. This introductory course, positioned at the beginning of a program, creates a foundation for ongoing and advanced AI education. The course design approach is presented as a series of modules and subtopics under each pillar. We emphasize the importance of thoughtful instructional design, including pedagogy, expected learning outcomes, and assessment strategies. This approach not only integrates social and technical learning but also democratizes AI education across diverse student populations and equips all learners with the socio‐technical, multidisciplinary perspectives necessary to navigate and shape the ethical future of AI. 
    more » « less
  3. Abstract As artificial intelligence (AI) grows in popularity and importance—both as a domain within broader computing research and in society at large—increasing focus will need to be paid to the ethical governance of this emerging technology. The attitudes and competencies with respect to AI ethics and policy among post-secondary students studying computer science (CS) are of particular interest, as many of these students will go on to play key roles in the development and deployment of future AI innovations. Despite this population of computer scientists being at the forefront of learning about and using AI tools, their attitudes towards AI remain understudied in the literature. In an effort to begin to close this gap, in fall 2024 we fielded a survey ($$n=117$$) to undergraduate and graduate students enrolled in CS courses at a large public university in the United States to assess their attitudes towards the nascent fields of AI ethics and policy. Additionally, we conducted one-on-one follow-up interviews with 13 students to elicit more in-depth responses on topics such as the use of AI tools in the classroom, ethical impacts of AI, and government regulation of AI. In this paper, we describe the findings of our exploratory study, drawing parallels and contrasts to broader public opinion polling in the United States. We conclude by evaluating the implications of CS student attitudes on the future of AI education and governance. 
    more » « less
  4. Background The rapid advancement of artificial intelligence (AI) is reshaping industrial workflows and workforce expectations. After its breakthrough year in 2023, AI has become ubiquitous, yet no standardized approach exists for integrating AI into engineering and computer science undergraduate curricula. Recent graduates find them- selves navigating evolving industry demands surrounding AI, often without formal preparation. The ways in which AI impacts their career decisions represent a critical perspective to support future students as graduates enter AI-friendly industries. Our work uses social cognitive career theory (SCCT) to qualitatively investigate how 14 recent engineering graduates working in a variety of industry sectors perceived the impact of AI on their careers and industries. Results Given the rapid and ongoing evolution of AI, findings suggested that SCCT may have limited applicability until AI technology has matured further. Many recent graduates lacked prior exposure to or a clear understanding of AI and its relevance to their professional roles. The timing of direct, practical exposure to AI emerged as a key influ- ence on how participants perceived AI’s impact on their career decisions. Participants emphasized a need for more customizable undergraduate curricula to align with industry trends and individual interests related to AI. While many acknowledged AI’s potential to enhance efficiency in data management and routine administrative tasks, they largely did not perceive AI as a direct threat to their core engineering functions. Instead, AI was viewed as a supplemen- tal tool requiring critical oversight. Despite interest in AI’s potential, most participants lacked the time or resources to independently pursue integrating AI into their professional roles. Broader concerns included ethical considerations, industry regulations, and the rapid pace of AI development. Conclusions This exploratory work highlights an urgent need for collaboration between higher education and industry leaders to more effectively integrate direct, hands-on experience with AI into engineering education. A personalized, context-driven approach to teaching AI that emphasizes ethical considerations and domain-specific applications would help better prepare students for evolving workforce expectations by highlighting AI’s relevance and limitations. This alignment would support more meaningful engagement with AI and empower future engineers to apply it responsibly and effectively in their fields. 
    more » « less
  5. This research-to-practice paper presents a curriculum, “AI Literacy for All,” to promote an interdisciplinary under-standing of AI, its socio-technical implications, and its practical applications for all levels of education. With the rapid evolution of artificial intelligence (AI), there is a need for AI literacy that goes beyond the traditional AI education curriculum. AI literacy has been conceptualized in various ways, including public literacy, competency building for designers, conceptual understanding of AI concepts, and domain-specific upskilling. Most of these conceptualizations were established before the public release of Generative AI (Gen-AI) tools such as ChatGPT. AI education has focused on the principles and applications of AI through a technical lens that emphasizes the mastery of AI principles, the mathematical foundations underlying these technologies, and the programming and mathematical skills necessary to implement AI solutions. The non-technical component of AI literacy has often been limited to social and ethical implications, privacy and security issues, or the experience of interacting with AI. In AI Literacy for all, we emphasize a balanced curriculum that includes technical as well as non-technical learning outcomes to enable a conceptual understanding and critical evaluation of AI technologies in an interdisciplinary socio-technical context. The paper presents four pillars of AI literacy: understanding the scope and technical dimensions of AI, learning how to interact with Gen-AI in an informed and responsible way, the socio-technical issues of ethical and responsible AI, and the social and future implications of AI. While it is important to include all learning outcomes for AI education in a Computer Science major, the learning outcomes can be adjusted for other learning contexts, including, non-CS majors, high school summer camps, the adult workforce, and the public. This paper advocates for a shift in AI literacy education to offer a more interdisciplinary socio-technical approach as a pathway to broaden participation in AI. This approach not only broadens students' perspectives but also prepares them to think critically about integrating AI into their future professional and personal lives. 
    more » « less