skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Estimating North Atlantic right whale prey based on Calanus finmarchicus thresholds
The planktonic copepod Calanus finmarchicus is a fundamental prey resource for the critically endangered North Atlantic right whale Eubalaena glacialis . Incorporation of prey information into E. gla cialis decision support tools could improve management. Zooplankton time series are usually analyzed with respect to abundance, but predators such as E. glacialis forage based on whether prey aggregations exceed energetic thresholds. In order to better understand the distribution and dynamics of the high-abundance end of C. finmarchicus on the northeastern US continental shelf, where E. glacialis feed, we modeled the environmental conditions associated with C. finmarchicus densities that exceed nominal feeding thresholds. Threshold values were chosen based on a review of E. glacialis feeding behavior throughout the domain. Following model selection procedures, we used a random forest model with bathymetry, bottom temperature, bottom salinity, day of year, sea surface temperature, sea surface temperature gradient, bathymetric slope, time-integrated chlorophyll, current velocity gradient, and wind covariates. Model performance was highest with thresholds that matched reported E. glacialis feeding thresholds equivalent to 10000 copepods m -2 . The high-density aggregations of C. finmarchicus had some different covariate responses compared to previous statistical abundance models, such as a warmer temperature range at both the surface and at depth, as well as a much higher degree of spatial variability. The output data layers of the model are designed to link with E. glacialis models used in US governmental decision support tools. Including this type of foraging information in decision support tools is a step forward in managing this critically endangered species.  more » « less
Award ID(s):
2018851
PAR ID:
10438634
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Marine Ecology Progress Series
Volume:
703
ISSN:
0171-8630
Page Range / eLocation ID:
1 to 16
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. North Atlantic right whalesEubalaena glacialishave been observed feeding in Cape Cod Bay (CCB) for over 8 decades, making CCB the most consistent known feeding habitat under shifting ocean and climate conditions. Determining the composition of the right whales’ prey resource in a stable feeding habitat during a period of environmental change will inform conservation efforts throughout their habitat range. We compared zooplankton sampled in the paths of skim-feeding right whales to the bay-wide zooplankton resource in CCB over 23 yr. The dominant zooplankton taxa in CCB werePseudocalanuscomplex,Calanus finmarchicus, andCentropagesspp. during the winter/spring seasons. The succession of these 3 dominant taxa—Centropagesspp. toPseudocalanuscomplex (day of the year [DOY] mean ± SD: 34 ± 3) toC. finmarchicus(DOY 92 ± 3)—has provided right whales with a stable, multi-month food resource in a small portion of their greater North Atlantic habitat. We found that right whales targeted aggregations of non-dominant prey groups:Pseudocalanuscomplex andCentropagesspp. aggregations whenCentropagesspp. dominated the bay-wide zooplankton community;Pseudocalanuscomplex patches andC. finmarchicuspatches whenPseudocalanusdominated; and primarilyC. finmarchicuscopepodite stage CIV and CV aggregations when CIII dominated bay-wide abundances. Over the time series, we found thatCentropagesspp. abundance increased andC. finmarchicusdecreased only at the beginning of the season. CCB remains a critical foraging habitat for right whales due to the phenological cycle of their prey and limited inter-annual changes in prey abundance. 
    more » « less
  2. The critically endangered North Atlantic right whale (Eubalaena glacialis) faces significant anthropogenic mortality. Recent climatic shifts in traditional habitats have caused abrupt changes in right whale distributions, challenging traditional conservation strategies. Tools that can help anticipate new areas where E. glacialis might forage could inform proactive management. In this study, we trained boosted regression tree algorithms with fine-resolution modeled environmental covariates to build prey copepod (Calanus) species-specific models of historical and future distributions of E. glacialis foraging habitat on the Northwest Atlantic Shelf, from the Mid-Atlantic Bight to the Labrador Shelf. We determined foraging suitability using E. glacialis foraging thresholds for Calanus spp. adjusted by a bathymetry-dependent bioenergetic correction factor based on known foraging behavior constraints. Models were then projected to 2046–2065 and 2066–2085 modeled climatologies for representative concentration pathway scenarios RCP 4.5 and RCP 8.5 with the goal of identifying potential shifts in foraging habitat. The models had generally high performance (area under the receiver operating characteristic curve > 0.9) and indicated ocean bottom conditions and bathymetry as important covariates. Historical (1990–2015) projections aligned with known areas of high foraging habitat suitability as well as potential suitable areas on the Labrador Shelf. Future projections suggested that the suitability of potential foraging habitat would decrease in parts of the Gulf of Maine and southwestern Gulf of Saint Lawrence, while potential habitat would be maintained or improved on the western Scotian Shelf, in the Bay of Fundy, on the Newfoundland and Labrador shelves, and at some locations along the continental shelf breaks. Overall, suitable habitat is projected to decline. Directing some survey efforts toward emerging potential foraging habitats can enable conservation management to anticipate the type of distribution shifts that have led to high mortality in the past. 
    more » « less
  3. Ojaveer, Henn (Ed.)
    Abstract Northern sand lance (Ammodytes dubius) and Atlantic herring (Clupea harengus) represent the dominant lipid-rich forage fish species throughout the Northeast US shelf and are critical prey for numerous top predators. However, unlike Atlantic herring, there is little research on sand lance or information about drivers of their abundance. We use intra-annual measurements of sand lance diet, growth, and condition to explain annual variability in sand lance abundance on the Northeast US Shelf. Our observations indicate that northern sand lance feed, grow, and accumulate lipids in the late winter through summer, predominantly consuming the copepod Calanus finmarchicus. Sand lance then cease feeding, utilize lipids, and begin gonad development in the fall. We show that the abundance of C. finmarchicus influences sand lance parental condition and recruitment. Atlantic herring can mute this effect through intra-guild predation. Hydrography further impacts sand lance abundance as increases in warm slope water decrease overwinter survival of reproductive adults. The predicted changes to these drivers indicate that sand lance will no longer be able to fill the role of lipid-rich forage during times of low Atlantic herring abundance—changing the Northeast US shelf forage fish complex by the end of the century. 
    more » « less
  4. Abstract The timing of biological events, known as phenology, plays a key role in shaping ecosystem dynamics, and climate change can significantly alter these timings. The Gulf of Maine on the Northeast U.S. Shelf is vulnerable to warming temperatures and other climate impacts, which could affect the distribution and production of plankton species sensitive to phenological shifts. In this study, we apply a novel data‐driven modeling approach to long‐term datasets to understand the population variability ofCalanus finmarchicus, a lipid‐rich copepod that is fundamental to the Gulf of Maine food web. Our results reveal how phenology impacts the complex intermingling of top‐down and bottom‐up controls. We find that early initiation of the annual phytoplankton bloom prompts an early start to the reproductive season for populations ofC. finmarchicusin the inner Gulf of Maine, resulting in high spring abundance. This spring condition appears to be conducive to enhanced predation pressure later in the season, consequently resulting in overall lowC. finmarchicusabundance in the fall. These biologically controlled dynamics are less pronounced in the outer Gulf of Maine, where water exchanges near the boundary have a greater influence. Our analysis augments existing hypotheses in fisheries oceanography and classical ecological theory by considering unique plankton life‐history characteristics and shelf sea dynamics, offering new insights into the biological factors drivingC. finmarchicusvariability. 
    more » « less
  5. We build on previous research describing correlative links between changes in the abundance of the copepod Calanus finmarchicus, a foundational zooplankton species of the pelagic food web, and diminishing recruitment of young-of-year American lobster (Homarus americanus) to benthic nurseries in the Gulf of Maine. Using parallel 31-year time series of lobster larvae and zooplankton collected on the New Hampshire coast between 1988 and 2018, we investigated how changes in phenology of stage I larval lobster and their putative copepod prey, C. finmarchicus, affect their temporal overlap and potential to interact during the larval season. We found that over the time series both the lobster egg hatch and first appearance of larvae began earlier in the season, a trend significantly correlated with ocean warming. The last appearance of larvae in late summer has been delayed, however, thereby extending the larval season. Even with the longer larval lobster season, the C. finmarchicus season has increasingly been ending before the peak abundance of stage I lobster larvae. The net effect is a widening mismatch in phenology of the two species, an outcome consistent with the hypothesis that changes in abundance and phenology of C. finmarchicus have contributed to recent declines in lobster recruitment. 
    more » « less