skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Accelerated evolution at chaperone promoters among Antarctic notothenioid fishes
Abstract BackgroundAntarctic fishes of the Notothenioidei suborder constitutively upregulate multiple inducible chaperones, a highly derived adaptation that preserves proteostasis in extreme cold, and represent a system for studying the evolution of gene frontloading. We screened forHsf1-binding sites, asHsf1is a master transcription factor of the heat shock response, and highly-conserved non-coding elements within proximal promoters of chaperone genes across 10 Antarctic notothens, 2 subpolar notothens, and 17 perciform fishes. We employed phylogenetic models of molecular evolution to determine whether (i) changes in motifs associated withHsf1-binding and/or (ii) relaxed purifying selection or exaptation at ancestralcis-regulatory elements coincided with the evolution of chaperone frontloading in Antarctic notothens. ResultsAntarctic notothens exhibited significantly fewerHsf1-binding sites per bp at chaperone promoters than subpolar notothens and Serranoidei, the most closely-related suborder to Notothenioidei included in this study. 90% of chaperone promoters exhibited accelerated substitution rates among Antarctic notothens relative to other perciformes. The proportion of bases undergoing accelerated evolution (i) was significantly greater in Antarctic notothens than in subpolar notothens and Perciformes in 70% of chaperone genes and (ii) increased among bases that were more conserved among perciformes. Lastly, we detected evidence of relaxed purifying selection and exaptation acting on ancestrally conservedcis-regulatory elements in the Antarctic notothen lineage and its major branches. ConclusionA large degree of turnover has occurred in Notothenioidei at chaperone promoter regions that are conserved among perciform fishes following adaptation to the cooling of the Southern Ocean. Additionally, derived reductions inHsf1-binding site frequency suggestcis-regulatory modifications to the classical heat shock response. Of note, turnover events within chaperone promoters were less frequent in the ancestral node of Antarctic notothens relative to younger Antarctic lineages. This suggests thatcis-regulatory divergence at chaperone promoters may be greater between Antarctic notothen lineages than between subpolar and Antarctic clades. These findings demonstrate that strong selective forces have acted uponcis-regulatory elements of chaperone genes among Antarctic notothens.  more » « less
Award ID(s):
1543419
PAR ID:
10604018
Author(s) / Creator(s):
;
Publisher / Repository:
Springer
Date Published:
Journal Name:
BMC Evolutionary Biology
Volume:
19
Issue:
1
ISSN:
1471-2148
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The suborder Notothenioidae is comprised of Antarctic fishes, several of which have lost their ability to rapidly upregulate heat shock proteins in response to thermal stress, instead adopting a pattern of expression resembling constitutive genes. Given the cold-denaturing effect that sub-zero waters have on proteins, evolution in the Southern Ocean has likely selected for increased expression of molecular chaperones. These selective pressures may have also enabled retention of gene duplicates, bolstering quantitative output of cytosolic heat shock proteins (HSPs). Given that newly duplicated genes are under more relaxed selection, it is plausible that gene duplication enabled altered regulation of such highly conserved genes. To test for evidence of gene duplication, copy number of various isoforms within major heat shock gene families were characterized via qPCR and compared between the Antarctic notothen, Trematomus bernacchii, which lost the inducible heat shock response, and the non-Antarctic notothen, Notothenia angustata, which maintains an inducible heat shock response. The results indicate duplication of isoforms within the hsp70 and hsp40 super families have occurred in the genome of T. bernacchii. The findings suggest gene duplications may have been critical in maintaining protein folding efficiency in the sub-zero waters and provided an evolutionary mechanism of alternative regulation of these conserved gene families. 
    more » « less
  2. Abstract Responses of cells to stimuli are increasingly discovered to involve the binding of sequence-specific transcription factors outside of known target genes. We wanted to determine to what extent the genome-wide binding and function of a transcription factor are shaped by the cell type versus the stimulus. To do so, we induced the Heat Shock Response pathway in two different cancer cell lines with two different stimuli and related the binding of its master regulator HSF1 to nascent RNA and chromatin accessibility. Here, we show that HSF1 binding patterns retain their identity between basal conditions and under different magnitudes of activation, so that common HSF1 binding is globally associated with distinct transcription outcomes. HSF1-induced increase in DNA accessibility was modest in scale, but occurred predominantly at remote genomic sites. Apart from regulating transcription at existing elements including promoters and enhancers, HSF1 binding amplified during responses to stimuli may engage inactive chromatin. 
    more » « less
  3. Abstract BackgroundThe La-related proteins (LARPs) are a superfamily of RNA-binding proteins associated with regulation of gene expression. Evidence points to an important role for post-transcriptional control of gene expression in germinating pollen tubes, which could be aided by RNA-binding proteins. ResultsIn this study, a genome-wide investigation of the LARP proteins in eight plant species was performed. The LARP proteins were classified into three families based on a phylogenetic analysis. The gene structure, conserved motifs,cis-acting elements in the promoter, and gene expression profiles were investigated to provide a comprehensive overview of the evolutionary history and potential functions ofZmLARPgenes in maize. Moreover,ZmLARP6c1was specifically expressed in pollen and ZmLARP6c1 was localized to the nucleus and cytoplasm in maize protoplasts. Overexpression ofZmLARP6c1enhanced the percentage pollen germination compared with that of wild-type pollen. In addition, transcriptome profiling analysis revealed that differentially expressed genes includedPABPhomologous genes and genes involved in jasmonic acid and abscisic acid biosynthesis, metabolism, signaling pathways and response in aZmlarp6c1::Dsmutant andZmLARP6c1-overexpression line compared with the corresponding wild type. ConclusionsThe findings provide a basis for further evolutionary and functional analyses, and provide insight into the critical regulatory function ofZmLARP6c1in maize pollen germination. 
    more » « less
  4. Abstract It has long been known that exons can serve ascis‐regulatory sequences, such as enhancers. However, the prevalence of such dual‐use of exons and how they evolve remain elusive. Based on our recently predicted, highly accurate large sets ofcis‐regulatory module candidates (CRMCs) and non‐CRMCs in the human genome, we find that exonic transcription factor binding sites (TFBSs) occupy at least a third of the total exon lengths, and 96.7% of genes have exonic TFBSs. Both A/T and C/G in exonic TFBSs are more likely under evolutionary constraints than those in non‐CRMC exons. Exonic TFBSs in codons tend to encode loops rather than more critical helices and strands in protein structures, while exonic TFBSs in untranslated regions (UTRs) tend to avoid positions where known UTR‐related functions are located. Moreover, active exonic TFBSs tend to be in close physical proximity to distal promoters whose genes have elevated transcription levels. These results suggest that exonic TFBSs might be more prevalent than originally thought and likely in dual‐use. We proposed a parsimonious model that well explains the observed evolutionary behaviors of exonic TFBS as well as how a stretch of codons evolve into a TFBS. Key pointsThere are more exonic regulatory sequences in the human genome than originally thought.Exonic transcription factor binding sites are more likely under negative selection or positive selection than counterpart nonregulatory sequences.Exonic transcription factor binding sites tend to be located in genome sequences that encode less critical loops in protein structures, or in less critical parts in 5′ and 3′ untranslated regions. 
    more » « less
  5. null (Ed.)
    In the frigid, oxygen-rich Southern Ocean (SO), Antarctic icefishes (Channichthyidae; Notothenioidei) evolved the ability to survive without producing erythrocytes and hemoglo- bin, the oxygen-transport system of virtually all vertebrates. Here, we integrate paleoclimate records with an extensive phylogenomic dataset of notothenioid fishes to understand the evolution of trait loss associated with climate change. In contrast to buoyancy adaptations in this clade, we find relaxed selection on the genetic regions controlling erythropoiesis evolved only after sustained cooling in the SO. This pattern is seen not only within icefishes but also occurred independently in other high-latitude notothenioids. We show that one spe- cies of the red-blooded dragonfish clade evolved a spherocytic anemia that phenocopies human patients with this disease via orthologous mutations. The genomic imprint of SO cli- mate change is biased toward erythrocyte-associated conserved noncoding elements (CNEs) rather than to coding regions, which are largely preserved through pleiotropy. The drift in CNEs is specifically enriched near genes that are preferentially expressed late in erythropoiesis. Furthermore, we find that the hematopoietic marrow of icefish species retained proerythroblasts, which indicates that early erythroid development remains intact. Our results provide a framework for understanding the interactions between development and the genome in shaping the response of species to climate change. 
    more » « less