skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 7, 2026

Title: Observation of Cosmic-Ray Anisotropy in the Southern Hemisphere with 12 yr of Data Collected by the IceCube Neutrino Observatory
Abstract We analyzed the 7.92 × 1011cosmic-ray-induced muon events collected by the IceCube Neutrino Observatory from 2011 May 13, when the fully constructed experiment started to take data, to 2023 May 12. This data set provides an up-to-date cosmic-ray arrival direction distribution in the Southern Hemisphere with unprecedented statistical accuracy covering more than a full period length of a solar cycle. Improvements in Monte Carlo event simulation and better handling of year-to-year differences in data processing significantly reduce systematic uncertainties below the level of statistical fluctuations compared to the previously published results. We confirm the observation of a change in the angular structure of the cosmic-ray anisotropy between 10 TeV and 1 PeV, more specifically in the 100–300 TeV energy range. For the first time, we analyzed the angular power spectrum at different energies. The observed variations of the power spectra with energy suggest relatively reduced large-scale features at high energy compared to those of medium and small scales. The large volume of data enhances the statistical significance at higher energies, up to the PeV scale, and smaller angular scales, down to approximately 6° compared to previous findings.  more » « less
Award ID(s):
2209483 2310051 2209445 2310050
PAR ID:
10604053
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Corporate Creator(s):
Publisher / Repository:
R. Abbasi et al 2025 ApJ 981 182
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
981
Issue:
2
ISSN:
0004-637X
Page Range / eLocation ID:
182
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The diffuse flux of cosmic neutrinos has been measured by the IceCube Observatory from TeV to PeV energies. We show that an improved characterization of this flux at lower energies, TeV and sub-TeV, reveals important information on the nature of the astrophysical neutrino sources in a model-independent way. Most significantly, it could confirm the present indications that neutrinos originate in cosmic environments that are optically thick to GeV–TeV γ -rays. This conclusion will become inevitable if an uninterrupted or even steeper neutrino power law is observed in the TeV region. In such γ -ray-obscured sources, the γ -rays that inevitably accompany cosmic neutrinos will cascade down to MeV–GeV energies. The requirement that the cascaded γ -ray flux accompanying cosmic neutrinos should not exceed the observed diffuse γ -ray background puts constraints on the peak energy and density of the radiation fields in the sources. Our calculations inspired by the existing data suggest that a fraction of the observed diffuse MeV–GeV γ -ray background may be contributed by neutrino sources with intense radiation fields that obscure the high-energy γ -ray emission accompanying the neutrinos. 
    more » « less
  2. The origin of Galactic cosmic rays (CRs), particularly around the knee region (∼3 PeV), remains a major unanswered question. Recent observations by LHAASO suggest that the knee is shaped mainly by protons, with a transition to heavier elements at higher energies. Microquasars—compact jet-emitting sources—have emerged as possible PeV CR accelerators, especially after detections of ultrahigh-energy gamma rays from these systems. We propose that the observed proton spectrum (hard below a few PeV, steep beyond) arises from the reacceleration of sub-TeV Galactic CRs via shear acceleration in large-scale microquasar jet-cocoon structures. Our model also naturally explains the observed spectrum of energies around a few tens of PeV by summing up heavier nuclei contributions. Additionally, similar reacceleration processes in radio galaxies can contribute to ultrahigh-energy CRs, bridging Galactic and extragalactic origins. Combined with low-energy CRs from supernova remnants and galaxy clusters around the second knee region, this scenario could provide a unified explanation for CRs across the entire energy spectrum. 
    more » « less
  3. Abstract Galactic PeV cosmic-ray accelerators (PeVatrons) are Galactic sources theorized to accelerate cosmic rays up to PeV in energy. The accelerated cosmic rays are expected to interact hadronically with nearby ambient gas or the interstellar medium, resulting in γ -rays and neutrinos. Recently, the Large High Altitude Air Shower Observatory (LHAASO) identified 12 γ -ray sources with emissions above 100 TeV, making them candidates for PeVatrons. While at these high energies the Klein–Nishina effect exponentially suppresses leptonic emission from Galactic sources, evidence for neutrino emission would unequivocally confirm hadronic acceleration. Here, we present the results of a search for neutrinos from these γ -ray sources and stacking searches testing for excess neutrino emission from all 12 sources as well as their subcatalogs of supernova remnants and pulsar wind nebulae with 11 yr of track events from the IceCube Neutrino Observatory. No significant emissions were found. Based on the resulting limits, we place constraints on the fraction of γ -ray flux originating from the hadronic processes in the Crab Nebula and LHAASO J2226+6057. 
    more » « less
  4. Abstract A neutrino-like event with an energy of ∼220 PeV was recently detected by the KM3NeT/ARCA telescope. If this neutrino comes from an astrophysical source or from the interaction of an ultrahigh-energy cosmic ray in the intergalactic medium, the ultrahigh-energy gamma rays that are coproduced with the neutrinos will scatter with the extragalactic background light, producing an electromagnetic cascade and resulting in emission at GeV-to-TeV energies. In this Letter, we compute the gamma-ray flux from this neutrino source considering various source distances and strengths of the intergalactic magnetic field (IGMF). We find that the associated gamma-ray emission could be observed by existing imaging air Cherenkov telescopes and air shower gamma-ray observatories, unless the strength of the IGMF isB ≳ 3 × 10−13G or the ultrahigh-energy gamma rays are attenuated inside of the source itself. In the latter case, this source is expected to be radio-loud. 
    more » « less
  5. Abstract The IceCube Neutrino Observatory, a cubic kilometer scale Cherenkov detector deployed in the deep ice at the geographic South Pole, investigates extreme astrophysical phenomena by studying the corresponding high-energy neutrino signal. Its discovery of a diffuse flux of astrophysical neutrinos with energies up to the PeV scale in 2013 has triggered a vast effort to identify the mostly unknown sources of these high energy neutrinos. Here, we present a new IceCube point-source search that improves the accuracy of the statistical analysis, especially at energies of a few TeV and below. The new approach is based on multidimensional kernel density estimation for the probability density functions and new estimators for the observables, namely the reconstructed energy and the estimated angular uncertainty on the reconstructed arrival direction. The more accurate analysis provides an improvement in discovery potential up to ∼30% over previous works for hard spectrum sources. 
    more » « less