Software specifications often use natural language to describe the desired behavior, but such specifications are difficult to verify automatically. We present Swami, an automated technique that extracts test oracles and generates executable tests from structured natural language specifications. Swami focuses on exceptional behavior and boundary conditions that often cause field failures but that developers often fail to manually write tests for. Evaluated on the official JavaScript specification (ECMA-262), 98.4% of the tests Swami generated were precise to the specification. Using Swami to augment developer-written test suites improved coverage and identified 1 previously unknown defect and 15 missing JavaScript features in Rhino, 1 previously unknown defect in Node.js, and 18 semantic ambiguities in the ECMA-262 specification.
more »
« less
Inference of Resource Management Specifications
A resource leak occurs when a program fails to free some finite resource after it is no longer needed. Such leaks are a significant cause of real-world crashes and performance problems. Recent work proposed an approach to prevent resource leaks based on checking resource management specifications. A resource management specification expresses how the program allocates resources, passes them around, and releases them; it also tracks the ownership relationship between objects and resources, and aliasing relationships between objects. While this specify-and-verify approach has several advantages compared to prior techniques, the need to manually write annotations presents a significant barrier to its practical adoption. This paper presents a novel technique to automatically infer a resource management specification for a program, broadening the applicability of specify-and-check verification for resource leaks. Inference in this domain is challenging because resource management specifications differ significantly in nature from the types that most inference techniques target. Further, for practical effectiveness, we desire a technique that can infer the resource management specification intended by the developer, even in cases when the code does not fully adhere to that specification. We address these challenges through a set of inference rules carefully designed to capture real-world coding patterns, yielding an effective fixed-point-based inference algorithm. We have implemented our inference algorithm in two different systems, targeting programs written in Java and C#. In an experimental evaluation, our technique inferred 85.5% of the annotations that programmers had written manually for the benchmarks. Further, the verifier issued nearly the same rate of false alarms with the manually-written and automatically-inferred annotations.
more »
« less
- PAR ID:
- 10604078
- Publisher / Repository:
- Association for Computing Machinery (ACM)
- Date Published:
- Journal Name:
- Proceedings of the ACM on Programming Languages
- Volume:
- 7
- Issue:
- OOPSLA2
- ISSN:
- 2475-1421
- Format(s):
- Medium: X Size: p. 1705-1728
- Size(s):
- p. 1705-1728
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Aldrich, Jonathan; Silva, Alexandra (Ed.)Many important security properties can be formulated in terms of flows of tainted data, and improved taint analysis tools to prevent such flows are of critical need. Most existing taint analyses use whole-program static analysis, leading to scalability challenges. Type-based checking is a promising alternative, as it enables modular and incremental checking for fast performance. However, type-based approaches have not been widely adopted in practice, due to challenges with false positives and annotating existing codebases. In this paper, we present a new approach to type-based checking of taint properties that addresses these challenges, based on two key techniques. First, we present a new type-based tainting checker with significantly reduced false positives, via more practical handling of third-party libraries and other language constructs. Second, we present a novel technique to automatically infer tainting type qualifiers for existing code. Our technique supports inference of generic type argument annotations, crucial for tainting properties. We implemented our techniques in a tool TaintTyper and evaluated it on real-world benchmarks. TaintTyper exceeds the recall of a state-of-the-art whole-program taint analyzer, with comparable precision, and 2.93X-22.9X faster checking time. Further, TaintTyper infers annotations comparable to those written by hand, suitable for insertion into source code. TaintTyper is a promising new approach to efficient and practical taint checking.more » « less
-
Abstract This paper presents a new approach to improve static program analysis using Large Language Models (LLMs). The approachinterleavescalls to the static analyzer and queries to the LLM. The query to the LLM is constructed based on intermediate results from the static analysis, and subsequent static analysis uses the results from the LLM query. We apply our approach to the problem oferror-specification inference: given systems code written in C, infer the set of values that each function can return on error. Such error specifications aid in program understanding and can be used to find error-handling bugs. We implemented our approach by incorporating LLMs into EESI, the state-of-the-art static analysis for error-specification inference. Compared to EESI, our approach achieves higher recall (from an average of 52.55% to 77.83%) and higher F1-score (from an average of 0.612 to 0.804) while maintaining precision (from an average of 86.67% to 85.12%) on real-world benchmarks such as Apache HTTPD and MbedTLS. We also conducted experiments to understand the sources of imprecision in our LLM-assisted analysis as well as the impact of LLM nondeterminism on the analysis results.more » « less
-
Static analysis tools have demonstrated effectiveness at finding bugs in real world code. Such tools are increasingly widely adopted to improve software quality in practice. Automated Program Repair (APR) has the potential to further cut down on the cost of improving software quality. However, there is a disconnect between these effective bug-finding tools and APR. Recent advances in APR rely on test cases, making them inapplicable to newly discovered bugs or bugs difficult to test for deterministically (like memory leaks). Additionally, the quality of patches generated to satisfy a test suite is a key challenge. We address these challenges by adapting advances in practical static analysis and verification techniques to enable a new technique that finds and then accurately fixes real bugs without test cases. We present a new automated program repair technique using Separation Logic. At a high-level, our technique reasons over semantic effects of existing program fragments to fix faults related to general pointer safety properties: resource leaks, memory leaks, and null dereferences. The procedure automatically translates identified fragments into source-level patches, and verifies patch correctness with respect to reported faults. In this work we conduct the largest study of automatically fixing undiscovered bugs in real-world code to date. We demonstrate our approach by correctly fixing 55 bugs, including 11 previously undiscovered bugs, in 11 real-world projects.more » « less
-
null (Ed.)Software configurability opens the door to misconfiguration vulnerabilities, invalid settings that expose software weaknesses. Misconfiguration is one the top ten most critical security risks and the most common. This paper envisions a world without misconfiguration vulnerabilities through the use of automated reasoning techniques to infer and secure software configurations. Real-world software, however, often lacks an explicit specification of secure configurations, relying on hand-validation by users. Real-world systems comprise many individual highly-configurable software components, making the space of possible configurations for the whole system enormous. To realize our vision and overcome these challenges, we aim to create a rigorous definition of configuration specifications, use formal methods to mechanize the inference and generation of valid configurations, and develop algorithms to automatically secure against misconfiguration.more » « less
An official website of the United States government
