skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Cellular-Assisted, Deep Learning Based COVID-19 Contact Tracing
The Coronavirus disease (COVID-19) pandemic has caused social and economic crisis to the globe. Contact tracing is a proven effective way of containing the spread of COVID-19. In this paper, we propose CAPER, a Cellular-Assisted deeP lEaRning based COVID-19 contact tracing system based on cellular network channel state information (CSI) measurements. CAPER leverages a deep neural network based feature extractor to map cellular CSI to a neural network feature space, within which the Euclidean distance between points strongly correlates with the proximity of devices. By doing so, we maintain user privacy by ensuring that CAPER never propagates one client's CSI data to its server or to other clients. We implement a CAPER prototype using a software defined radio platform, and evaluate its performance in a variety of real-world situations including indoor and outdoor scenarios, crowded and sparse environments, and with differing data traffic patterns and cellular configurations in common use. Microbenchmarks show that our neural network model runs in 12.1 microseconds on the OnePlus 8 smartphone. End-to-end results demonstrate that CAPER achieves an overall accuracy of 93.39%, outperforming the accuracy of BLE based approach by 14.96%, in determining whether two devices are within six feet or not, and only misses 1.21% of close contacts. CAPER is also robust to environment dynamics, maintaining an accuracy of 92.35% after running for ten days.  more » « less
Award ID(s):
2027647 2223556
PAR ID:
10605384
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Association for Computing Machinery (ACM)
Date Published:
Journal Name:
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
Volume:
6
Issue:
3
ISSN:
2474-9567
Format(s):
Medium: X Size: p. 1-27
Size(s):
p. 1-27
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The coronavirus disease (COVID-19) pandemic has caused social and economic upheaval around the world. Contact tracing is a proven effective way that health authorities may contain the spread of COVID-19, but is challenging for airborne disease. In this paper, we propose LTESafe, a cellular-assisted privacy-preserving COVID-19 contact tracing system. LTESafe leverages a deep neural network based feature extractor to map the cellular CSI to a high-dimensional feature space, within which the Euclidean distance between points indicates the proximity of devices. By doing so, we preserve user privacy by hiding the physical locations of smartphones and at the same time achieve high accuracy. Our preliminary experimental results demonstrate that LTESafe achieves an overall accuracy of 92.79% in determining whether two devices are within six feet proximity or not, and only misses 1.35% of close contacts. 
    more » « less
  2. Contact tracing can play a key role in controlling human-to-human transmission of a highly contagious disease such as COVID-19. We investigate the benefits and costs of contact tracing in the COVID-19 transmission. We estimate two unknown epidemic model parameters (basic reproductive number and confirmed rate delta by using confirmed case data). We model contact tracing in a two-layer network model. The two-layer network is composed of the contact network in the first layer and the tracing network in the second layer. In terms of benefits, simulation results show that increasing the fraction of traced contacts decreases the size of the epidemic. For example, tracing 25% of the contacts is enough for any reopening scenario to reduce the number of confirmed cases by half. Considering the act of quarantining susceptible households as the contact tracing cost, we have observed an interesting phenomenon. The number of quarantined susceptible people increases with the increase of tracing because each individual confirmed case is mentioning more contacts. However, after reaching a maximum point, the number of quarantined susceptible people starts to decrease with the increase of tracing because the increment of the mentioned contacts is balanced by a reduced number of confirmed cases. The goal of this research is to assess the effectiveness of contact tracing for the containment of COVID-19 spreading in the different movement levels of a rural college town in the USA. Our research model is designed to be flexible and therefore, can be used in other geographic locations. 
    more » « less
  3. Background Digital surveillance tools and health informatics show promise in counteracting diseases but have limited uptake. A notable illustration of the limits of such tools is the general failure of digital contact tracing in the United States in response to COVID-19. Objective We investigated the associations between individual characteristics and the willingness to use app-based contact tracing in Detroit, a majority-minority city that experienced multiple waves of COVID-19 outbreaks and deaths since the start of the pandemic. The aim of this study was to examine variations among residents in the willingness to download a contact tracing app on their phones to provide public health officials with information about close COVID-19 contact during summer 2020. Methods To examine residents’ willingness to participate in digital contact tracing, we analyzed data from 2 waves of the Detroit Metro Area Communities Study, a population-based survey of Detroit, Michigan residents. The data captured 1873 responses from 991 Detroit residents collected in June and July 2020. We estimated a series of multilevel logit models to gain insights into differences in the willingness to participate in digital contact tracing across a variety of individual attributes, including race/ethnicity, degree of trust in the government, and level of education, as well as interactions among these variables. Results Our results reflected widespread reluctance to participate in digital contact tracing in response to COVID-19, as less than half (826/1873, 44.1%) of the respondents said they would be willing to participate in app-based contact tracing. Compared to White respondents, Black (odds ratio [OR] 0.45, 95% CI 0.23-0.86) and Latino (OR 0.32, 95% CI 0.11-0.99) respondents were significantly less willing to participate in digital contact tracing. Trust in the government was positively associated with the willingness to participate in digital contact tracing (OR 1.17, 95% CI 1.07-1.27), but this effect was the strongest for White residents (OR 2.14, 95% CI 1.55-2.93). We found similarly divergent patterns of the effects of education by race. While there were no significant differences among noncollege-educated residents, White college-educated residents showed greater willingness to use app-based contact tracing (OR 6.12, 95% CI 1.86-20.15) and Black college-educated residents showed less willingness (OR 0.46, 95% CI 0.26-0.81). Conclusions Trust in the government and education contribute to Detroit residents’ wariness of digital contact tracing, reflecting concerns about surveillance that cut across race but likely arise from different sources. These findings point to the importance of a culturally informed understanding of health hesitancy for future efforts hoping to leverage digital contact tracing. Though contact tracing technologies have the potential to advance public health, unequal uptake may exacerbate disparate impacts of health crises. 
    more » « less
  4. Moreno, Yamir (Ed.)
    Testing, contact tracing, and isolation (TTI) is an epidemic management and control approach that is difficult to implement at scale because it relies on manual tracing of contacts. Exposure notification apps have been developed to digitally scale up TTI by harnessing contact data obtained from mobile devices; however, exposure notification apps provide users only with limited binary information when they have been directly exposed to a known infection source. Here we demonstrate a scalable improvement to TTI and exposure notification apps that uses data assimilation (DA) on a contact network. Network DA exploits diverse sources of health data together with the proximity data from mobile devices that exposure notification apps rely upon. It provides users with continuously assessed individual risks of exposure and infection, which can form the basis for targeting individual contact interventions. Simulations of the early COVID-19 epidemic in New York City are used to establish proof-of-concept. In the simulations, network DA identifies up to a factor 2 more infections than contact tracing when both harness the same contact data and diagnostic test data. This remains true even when only a relatively small fraction of the population uses network DA. When a sufficiently large fraction of the population (≳ 75%) uses network DA and complies with individual contact interventions, targeting contact interventions with network DA reduces deaths by up to a factor 4 relative to TTI. Network DA can be implemented by expanding the computational backend of existing exposure notification apps, thus greatly enhancing their capabilities. Implemented at scale, it has the potential to precisely and effectively control future epidemics while minimizing economic disruption. 
    more » « less
  5. null (Ed.)
    Channel state information (CSI) plays a vital role in scheduling and capacity-approaching transmission optimization of massive MIMO communication systems. In frequency division duplex (FDD) MIMO systems, forward link CSI reconstruction at transmitter relies on CSI feedback from receiving nodes and must carefully weigh the tradeoff between reconstruction accuracy and feedback bandwidth. Recent application of recurrent neural networks (RNN) has demonstrated promising results of massive MIMO CSI feedback compression. However, the cost of computation and memory associated with RNN deep learning remains high. In this work, we exploit channel temporal coherence to improve learning accuracy and feedback efficiency. Leveraging a Markovian model, we develop a deep convolutional neural network (CNN)-based framework called MarkovNet to efficiently encode CSI feedback to improve accuracy and efficiency. We explore important physical insights including spherical normalization of input data and deep learning network optimizations in feedback compression. We demonstrate that MarkovNet provides a substantial performance improvement and computational complexity reduction over the RNN-based work.We demonstrate MarkovNet’s performance under different MIMO configurations and for a range of feedback intervals and rates. CSI recovery with MarkovNet outperforms RNN-based CSI estimation with only a fraction of computational cost. 
    more » « less