skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Epidemic management and control through risk-dependent individual contact interventions
Testing, contact tracing, and isolation (TTI) is an epidemic management and control approach that is difficult to implement at scale because it relies on manual tracing of contacts. Exposure notification apps have been developed to digitally scale up TTI by harnessing contact data obtained from mobile devices; however, exposure notification apps provide users only with limited binary information when they have been directly exposed to a known infection source. Here we demonstrate a scalable improvement to TTI and exposure notification apps that uses data assimilation (DA) on a contact network. Network DA exploits diverse sources of health data together with the proximity data from mobile devices that exposure notification apps rely upon. It provides users with continuously assessed individual risks of exposure and infection, which can form the basis for targeting individual contact interventions. Simulations of the early COVID-19 epidemic in New York City are used to establish proof-of-concept. In the simulations, network DA identifies up to a factor 2 more infections than contact tracing when both harness the same contact data and diagnostic test data. This remains true even when only a relatively small fraction of the population uses network DA. When a sufficiently large fraction of the population (≳ 75%) uses network DA and complies with individual contact interventions, targeting contact interventions with network DA reduces deaths by up to a factor 4 relative to TTI. Network DA can be implemented by expanding the computational backend of existing exposure notification apps, thus greatly enhancing their capabilities. Implemented at scale, it has the potential to precisely and effectively control future epidemics while minimizing economic disruption.  more » « less
Award ID(s):
1835576
PAR ID:
10381663
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Editor(s):
Moreno, Yamir
Date Published:
Journal Name:
PLOS Computational Biology
Volume:
18
Issue:
6
ISSN:
1553-7358
Page Range / eLocation ID:
e1010171
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. COVID-19 exposure-notification apps have struggled to gain adoption. Existing literature posits as potential causes of this low adoption: privacy concerns, insufficient data transparency, and the type of appeal – collective- vs. individual-good – used to frame the app. As policy guidance suggests using tailored advertising to evaluate the effects of these factors, we present the first field study of COVID-19 contact tracing apps with a randomized, control trial of 14 different advertisements for CovidDefense, Louisiana’s COVID-19 exposure-notification app. We find that all three hypothesized factors – privacy, data transparency, and appeals framing – relate to app adoption, even when controlling for age, gender, and community density. Our results offer (1) the first field evidence supporting the use of collective-good appeals, (2) nuanced findings regarding the efficacy of data and privacy transparency, the effects of which are moderated by appeal framing and potential users’ demographics, and (3) field-evidence-based guidance for future efforts to encourage pro-social health technology adoption. 
    more » « less
  2. Witnessing the blooming adoption of push notifications on mobile devices, this new message delivery paradigm has become pervasive in diverse applications. Accompanying with its broad adoption, the potential security risks and privacy exposure issues raise public concerns regarding its great social impacts. This paper conducts the first attempt to exploit the mobile notification ecosystem. By dissecting its structural elements and implementation process, a comprehensive vulnerability analysis is conducted towards the complete flow of mobile notification from platform enrollment to messaging. Meanwhile, for privacy exposure, we first examine the implementation of privacy policy compliance by proposing a three-level inspection approach to guide our analysis. Then, our top-down methods from documentation analysis, application network traffic study, to static analysis expose the illicit data collection behaviors in released applications. In addition, we uncover the potential privacy inference resulted from the notification monitoring. To support our analysis, we conduct empirical studies on 12 most popular notification platforms and perform static analysis over 30,000+ applications. We discover: 1) six platforms either provide ambiguous KEY naming rules or offer vulnerable messaging APIs; 2) privacy policy compliance implementations are either stagnated at the documentation stages (8 of 12 platforms) or never implemented in apps, resulting in billions of users suffering from privacy exposure; and 3) some apps can stealthily monitor notification messages delivering to other apps, potentially incurring user privacy inference risks. Our study raises the urgent demand for better regulations of mobile notification deployment. 
    more » « less
  3. Use of smartphone-based digital contact- tracing apps has shown promise in responding to the COVID-19 pandemic. But such apps can reveal very personal information; thus, their use raises important societal questions, not just during the current pandemic but as we learn and prepare for other inevitable outbreaks ahead. Can privacy-protective versions of such apps work? Are they efficacious? Because the apps influence who is notified of exposure and who gets tested—and possibly treated—we need to consider the apps in the context of health care equity. Exposure-notification apps are predicated on the assumption that if someone is informed of exposure, they will follow instructions to isolate. Such an expectation fails to take into account that isolation—and sometimes even seeking care when ill—is much harder for some populations than others. If apps are to work for all, and not make this worse for disadvantaged populations, there needs to be basic social infrastructure that supports testing, contact tracing, and isolation. 
    more » « less
  4. null (Ed.)
    The global coronavirus pandemic has raised important questions regarding how to balance public health concerns with privacy protections for individual citizens. In this essay, we evaluate contact tracing apps, which have been offered as a technological solution to minimize the spread of COVID-19. We argue that apps such as those built on Google and Apple’s “exposure notification system” should be evaluated in terms of the contextual integrity of information flows; in other words, the appropriateness of sharing health and location data will be contextually dependent on factors such as who will have access to data, as well as the transmission principles underlying data transfer. We also consider the role of prevailing social and political values in this assessment, including the large-scale social benefits that can be obtained through such information sharing. However, caution should be taken in violating contextual integrity, even in the case of a pandemic, because it risks a long-term loss of autonomy and growing function creep for surveillance and monitoring technologies. 
    more » « less
  5. Exposure notification applications are designed to help trace disease spreading by alerting exposed individuals to get tested. However, false alarms can cause users to become hesitant to respond, making the applications ineffective. To address the shortcomings of slow manual contact tracing, costly lockdowns, and unreliable exposure notification applications, better disease mitigation strategies are needed. In this paper, we propose a new disease mitigation paradigm where people can reduce infection spreading while maintaining some mobility (i.e., Quarantine in Motion). Our approach utilizes Graph Neural Networks (GNNs) to predict disease hotspots such as restaurants, shops and parks, and Multi-Agent Reinforcement Learning (MARL) to collaboratively manage human mobility to reduce disease transmission. As proof of concept, we simulate an infection using real-world mobility data from New York City (over 200,000 devices) and Austin (over 36,000 devices) and train 10,000 agents from each city to manage disease dynamics. Through simulation, we show that a trained population suppresses their reproduction rate below 1, thereby mitigating the outbreak. 
    more » « less