skip to main content

This content will become publicly available on June 23, 2023

Title: Epidemic management and control through risk-dependent individual contact interventions
Testing, contact tracing, and isolation (TTI) is an epidemic management and control approach that is difficult to implement at scale because it relies on manual tracing of contacts. Exposure notification apps have been developed to digitally scale up TTI by harnessing contact data obtained from mobile devices; however, exposure notification apps provide users only with limited binary information when they have been directly exposed to a known infection source. Here we demonstrate a scalable improvement to TTI and exposure notification apps that uses data assimilation (DA) on a contact network. Network DA exploits diverse sources of health data together with the proximity data from mobile devices that exposure notification apps rely upon. It provides users with continuously assessed individual risks of exposure and infection, which can form the basis for targeting individual contact interventions. Simulations of the early COVID-19 epidemic in New York City are used to establish proof-of-concept. In the simulations, network DA identifies up to a factor 2 more infections than contact tracing when both harness the same contact data and diagnostic test data. This remains true even when only a relatively small fraction of the population uses network DA. When a sufficiently large fraction of the population more » (≳ 75%) uses network DA and complies with individual contact interventions, targeting contact interventions with network DA reduces deaths by up to a factor 4 relative to TTI. Network DA can be implemented by expanding the computational backend of existing exposure notification apps, thus greatly enhancing their capabilities. Implemented at scale, it has the potential to precisely and effectively control future epidemics while minimizing economic disruption. « less
; ; ; ; ; ; ; ; ; ;
Moreno, Yamir
Award ID(s):
Publication Date:
Journal Name:
PLOS Computational Biology
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. With the recent advances in human sensing, the push to integrate human mobility tracking with epidemic modeling highlights the lack of groundwork at the mesoscale (e.g., city-level) for both contact tracing and transmission dynamics. Although GPS data has been used to study city-level outbreaks in the past, existing approaches fail to capture the path of infection at the individual level. Consequently, in this paper, we extend epidemics prediction from estimating the size of an outbreak at the population level to estimating the individuals who may likely get infected within a finite period of time. To this end, we propose a network science based method to first build and then prune the dynamic contact networks for recurring interactions; these networks can serve as the backbone topology for mechanistic epidemics modeling. We test our method using Foursquare’s Points of Interest (POI) smart phone geolocation data from over 1.3 million devices to better approximate the COVID-19 infection curves for two major (yet very different) US cities, (i.e., Austin and New York City), while maintaining the granularity of individual transmissions and reducing model uncertainty. Our method provides a foundation for building a disease prediction framework at the mesoscale that can help both policy makersmore »and individuals better understand their estimated state of health and help the pandemic mitigation efforts.« less
  2. The global coronavirus pandemic has raised important questions regarding how to balance public health concerns with privacy protections for individual citizens. In this essay, we evaluate contact tracing apps, which have been offered as a technological solution to minimize the spread of COVID-19. We argue that apps such as those built on Google and Apple’s “exposure notification system” should be evaluated in terms of the contextual integrity of information flows; in other words, the appropriateness of sharing health and location data will be contextually dependent on factors such as who will have access to data, as well as the transmission principles underlying data transfer. We also consider the role of prevailing social and political values in this assessment, including the large-scale social benefits that can be obtained through such information sharing. However, caution should be taken in violating contextual integrity, even in the case of a pandemic, because it risks a long-term loss of autonomy and growing function creep for surveillance and monitoring technologies.
  3. This work presents the first-ever detailed and large-scale measurement analysis of storage consumption behavior of applications (apps) on smart mobile devices. We start by carrying out a five-year longitudinal static analysis of millions of Android apps to study the increase in their sizes over time and identify various sources of app storage consumption. Our study reveals that mobile apps have evolved as large monolithic packages that are packed with features to monetize/engage users and optimized for performance at the cost of redundant storage consumption. We also carry out a mobile storage usage study with 140 Android participants. We built and deployed a lightweight context-aware storage tracing tool, called cosmos, on each participant's device. Leveraging the traces from our user study, we show that only a small fraction of apps/features are actively used and usage is correlated to user context. Our findings suggest a high degree of app feature bloat and unused functionality, which leads to inefficient use of storage. Furthermore, we found that apps are not constrained by storage quota limits, and developers freely abuse persistent storage by frequently caching data, creating debug logs, user analytics, and downloading advertisements as needed. Finally, drawing upon our findings, we discuss the needmore »for efficient mobile storage management, and propose an elastic storage design to reclaim storage space when unused. We further identify research challenges and quantify expected storage savings from such a design. We believe our findings will be valuable to the storage research community as well as mobile app developers.« less
  4. Standard epidemiological models for COVID-19 employ variants of compartment (SIR or susceptible–infectious–recovered) models at local scales, implicitly assuming spatially uniform local mixing. Here, we examine the effect of employing more geographically detailed diffusion models based on known spatial features of interpersonal networks, most particularly the presence of a long-tailed but monotone decline in the probability of interaction with distance, on disease diffusion. Based on simulations of unrestricted COVID-19 diffusion in 19 US cities, we conclude that heterogeneity in population distribution can have large impacts on local pandemic timing and severity, even when aggregate behavior at larger scales mirrors a classic SIR-like pattern. Impacts observed include severe local outbreaks with long lag time relative to the aggregate infection curve, and the presence of numerous areas whose disease trajectories correlate poorly with those of neighboring areas. A simple catchment model for hospital demand illustrates potential implications for health care utilization, with substantial disparities in the timing and extremity of impacts even without distancing interventions. Likewise, analysis of social exposure to others who are morbid or deceased shows considerable variation in how the epidemic can appear to individuals on the ground, potentially affecting risk assessment and compliance with mitigation measures. These results demonstratemore »the potential for spatial network structure to generate highly nonuniform diffusion behavior even at the scale of cities, and suggest the importance of incorporating such structure when designing models to inform health care planning, predict community outcomes, or identify potential disparities.« less
  5. Use of smartphone-based digital contact- tracing apps has shown promise in responding to the COVID-19 pandemic. But such apps can reveal very personal information; thus, their use raises important societal questions, not just during the current pandemic but as we learn and prepare for other inevitable outbreaks ahead. Can privacy-protective versions of such apps work? Are they efficacious? Because the apps influence who is notified of exposure and who gets tested—and possibly treated—we need to consider the apps in the context of health care equity. Exposure-notification apps are predicated on the assumption that if someone is informed of exposure, they will follow instructions to isolate. Such an expectation fails to take into account that isolation—and sometimes even seeking care when ill—is much harder for some populations than others. If apps are to work for all, and not make this worse for disadvantaged populations, there needs to be basic social infrastructure that supports testing, contact tracing, and isolation.