Abstract Recent in situ observations from Parker Solar Probe (PSP) near perihelia reveal ion beams, temperature anisotropies, and kinetic wave activity. These features are likely linked to solar wind heating and acceleration. During PSP Encounter 17 (at 11.4Rs) on 2023 September 26, the PSP/FIELDS instrument detected enhanced ion-scale wave activity associated with deviations from local thermodynamic equilibrium in ion velocity distribution functions (VDFs) observed by the PSP/Solar Probe Analyzers-Ion. Dense beams (secondary populations) were present in the proton VDFs during this wave activity. Using bi-Maxwellian fits to the proton VDFs, we found that the density of the proton beam population increased during the wave activity and, unexpectedly, surpassed the core population at certain intervals. Interestingly, the wave power was reduced during the intervals when the beam population density exceeded the core density. The drift velocity of the beams decreases from 0.9 to 0.7 of the Alfvén speed, and the proton core shows a higher temperature anisotropy (T⊥/T∥ > 2.5) during these intervals. We conclude that the observations during these intervals are consistent with a reconnection event during a heliospheric current sheet crossing. During this event,α-particle parameters (density, velocity, and temperature anisotropy) remained nearly constant. Using linear analysis, we examined how the proton beam drives instability or wave dissipation. Furthermore, we investigated the nonlinear evolution of ion kinetic instabilities using hybrid kinetic simulations. This study provides direct clues about energy transfer between particles and waves in the young solar wind. 
                        more » 
                        « less   
                    This content will become publicly available on May 8, 2026
                            
                            Modeling Hot, Anisotropic Ion Beams in the Solar Wind Motivated by the Parker Solar Probe Observations near Perihelia
                        
                    
    
            Abstract Recent observations of the solar wind ions by the SPAN-I instruments on board the Parker Solar Probe (PSP) spacecraft at solar perihelia (Encounters) 4 and closer find ample evidence of complex anisotropic non-Maxwellian velocity distributions that consist of core, beam, and “hammerhead” (i.e., anisotropic beam) populations. The proton core populations are anisotropic, withT⊥/T∥ > 1, and the beams have super-Alfvénic speed relative to the core (we provide an example from Encounter 17). Theα-particle population shows similar features to the protons. These unstable velocity distribution functions (VDFs) are associated with enhanced, right-hand (RH) and left-hand (LH) polarized ion-scale kinetic wave activity, detected by the FIELDS instrument. Motivated by PSP observations, we employ nonlinear hybrid models to investigate the evolution of the anisotropic hot-beam VDFs and model the growth and the nonlinear stage of ion kinetic instabilities in several linearly unstable cases. The models are initialized with ion VDFs motivated by the observational parameters. We find rapidly growing (in terms of proton gyroperiods) combined ion-cyclotron and magnetosonic instabilities, which produce LH and RH ion-scale wave spectra, respectively. The modeled ion VDFs in the nonlinear stage of the evolution are qualitatively in agreement with PSP observations of the anisotropic core and “hammerhead” velocity distributions, quantifying the effect of the ion kinetic instabilities on wind plasma heating close to the Sun. We conclude that the wave–particle interactions play an important role in the energy transfer between the magnetic energy (waves) and random particle motion, leading to anisotropic solar wind plasma heating. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2401162
- PAR ID:
- 10606221
- Publisher / Repository:
- The Astrophysical Journal
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 984
- Issue:
- 2
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 174
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Context.In situ observations by the Parker Solar Probe (PSP) have revealed new properties of the proton velocity distributions (VDs), including hammerhead features that suggest a non-isotropic broadening of the beams. Aims.The present work proposes a very plausible explanation for the formation of hammerhead proton populations through the action of a proton firehose-like instability triggered by the proton beam. Methods.We investigated a self-generated firehose-like instability driven by the relative drift of ion populations using a simplified moment-based quasi-linear (QL) theory. While simpler and faster than advanced numerical simulations, this toy model provided rapid insights and concisely highlighted the role of plasma micro-instabilities in relaxing the observed anisotropies of particle VDs in the solar wind and space plasmas. Results.The QL theory proposed here shows that the resulting transverse waves are right-hand polarized and have two consequences on the protons: (i) They reduce the relative drift between the beam and the core, but above all, (ii) they induce a strong perpendicular temperature anisotropy specific to the observed hammerhead ion beam. Moreover, the long-run QL results suggest that these hammerhead distributions are rather transitory states that are still subject to relaxation mechanisms, in which instabilities such as the one discussed here are very likely involved. This foundational work motivates future detailed studies using advanced methods.more » « less
- 
            Abstract The SWEAP instrument suite on Parker Solar Probe (PSP) has detected numerous proton beams associated with coherent, circularly polarized, ion-scale waves observed by PSP’s FIELDS instrument suite. Measurements during PSP Encounters 4−8 revealed pronounced complex shapes in the proton velocity distribution functions (VDFs), in which the tip of the beam undergoes strong perpendicular diffusion, resulting in VDF level contours that resemble a “hammerhead.” We refer to these proton beams, with their attendant “hammerhead” features, as the ion strahl. We present an example of these observations occurring simultaneously with a 7 hr ion-scale wave storm and show results from a preliminary attempt at quantifying the occurrence of ion-strahl broadening through three-component ion VDF fitting. We also provide a possible explanation of the ion perpendicular scattering based on quasilinear theory and the resonant scattering of beam ions by parallel-propagating, right circularly polarized, fast magnetosonic/whistler waves.more » « less
- 
            Abstract Analysis of ion-kinetic instabilities in solar wind plasmas is crucial for understanding energetics and dynamics throughout the heliosphere, as evident from spacecraft observations of complex ion velocity distribution functions (VDFs) and ubiquitous ion-scale kinetic waves. In this work, we explore machine learning (ML) and deep learning (DL) classification models to identify unstable cases of ion VDFs driving kinetic waves. Using 34 hybrid particle-in-cell simulations of kinetic protons andα-particles initialized using plasma parameters derived from solar wind (SW) observations, we prepare a data set of nearly 1600 VDFs representing stable/unstable cases and associated plasma and wave properties. We compare feature-based classifiers applied to VDF moments, such as support vector machine and random forest (RF), with DL convolutional neural networks (CNNs) applied directly to VDFs as images in the gyrotropic velocity plane. The best-performing classifier, RF, has an accuracy of 0.96 ± 0.01, and a true skill score of 0.89 ± 0.03, with the majority of missed predictions made near stability thresholds. We study how the variations of the temporal derivative thresholds of anisotropies and magnetic energies, and sampling strategies for simulation runs, affect classification. CNN-based models have the highest accuracy of 0.88 ± 0.18 among all considered if evaluated on the runs entirely not used during the model training. The addition of theE⊥power spectrum as an input for the ML models leads to the improvement of instability analysis for some cases. The results demonstrate the potential of ML and DL for the detection of ion-scale kinetic instabilities using spacecraft observations of SW and magnetospheric plasmas.more » « less
- 
            Abstract The hot and diffuse nature of the Sun’s extended atmosphere allows it to persist in non-equilibrium states for long enough that wave–particle instabilities can arise and modify the evolution of the expanding solar wind. Determining which instabilities arise, and how significant a role they play in governing the dynamics of the solar wind, has been a decades-long process involving in situ observations at a variety of radial distances. With new measurements from the Parker Solar Probe (PSP), we can study what wave modes are driven near the Sun, and calculate what instabilities are predicted for different models of the underlying particle populations. We model two hours-long intervals of PSP/SPAN-i measurements of the proton phase-space density during the PSP’s fourth perihelion with the Sun using two commonly used descriptions for the underlying velocity distribution. The linear stability and growth rates associated with the two models are calculated and compared. We find that both selected intervals are susceptible to resonant instabilities, though the growth rates and kinds of modes driven unstable vary depending on whether the protons are modeled using one or two components. In some cases, the predicted growth rates are large enough to compete with other dynamic processes, such as the nonlinear turbulent transfer of energy, in contrast with relatively slower instabilities at larger radial distances from the Sun.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
